Research Article
BibTex RIS Cite
Year 2023, , 124 - 135, 01.07.2023
https://doi.org/10.51354/mjen.1242313

Abstract

References

  • Kulasingam V., Diamandis EP., Strategies for discovering novel cancer biomarkers through utilization of emerging technologies, Nature clinical practice Oncology, 5, (2008), 588-99.
  • Hayes D.F., Bast R.C., Desch C.E., Fritsche Jr.H., Kemeny N.E., Jessup J.M., Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers, Journal of the National Cancer Institute, 88, (1996), 1456-66.
  • Duffy M., Clinical uses of tumor markers: a critical review, Critical reviews in clinical laboratory sciences, 38, (2001), 225-62.
  • Duffy M.J., Tumor markers in clinical practice: a review focusing on common solid cancers, Medical Principles and Practice, 22, (2013), 4-11.
  • Chikkaveeraiah B.V., Bhirde A.A., Morgan N.Y., Eden H.S., Chen X., Electrochemical immunosensors for detection of cancer protein biomarkers, ACS nano, 6, (2012), 6546-61.
  • Wulfkuhle J.D., Liotta L.A., Petricoin E.F., Proteomic applications for the early detection of cancer, Nature reviews cancer, 3, (2003), 267-75.
  • Kingsmore S.F., Multiplexed protein measurement: technologies and applications of protein and antibody arrays, Nature reviews Drug discovery, 5, (2006), 310-21.
  • Reid B.M., Permuth J.B., Sellers T.A., Epidemiology of ovarian cancer: a review, Cancer biology & medicine, 14, (2017), 9.
  • Majd S.M., Salimi A., Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film, Analytica chimica acta, 1000, (2018), 273-82.
  • Diaconu I., Cristea C., Hârceagă V., Marrazza G., Berindan-Neagoe I., Săndulescu R., Electrochemical immunosensors in breast and ovarian cancer, Clinica Chimica Acta, 425, (2013), 128-38.
  • Lahoud R., O'Shea A., El-Mouhayyar C., Atre I., Eurboonyanun K., Harisinghani M., Tumour markers and their utility in imaging of abdominal and pelvic malignancies, Clinical Radiology, 76, (2020), 99-107.
  • Wu S., Xu K., Chen G., Zhang J., Liu Z., Xie X., Identification of serum biomarkers for ovarian cancer using MALDI– TOF-MS combined with magnetic beads, International journal of clinical oncology, 17, (2012), 89-95.
  • Lamberti I., Scarano S., Esposito C.L., Antoccia A., Antonini G., Tanzarella C., Franciscis V.D., Minunni M., In vitro selection of RNA aptamers against CA125 tumor marker in ovarian cancer and its study by optical biosensing, Methods, 97, (2016), 58-68.
  • Chakkarapani S.K., Zhang P., Ahn S., Kang S.H., Total internal reflection plasmonic scattering-based fluorescence-free nanoimmunosensor probe for ultra-sensitive detection of cancer antigen 125, Biosensors and Bioelectronics, 81, (2016), 23-31.
  • Zhao Y., Zheng Y., Zhao C., You J., Qu F., Hollow PDA-Au nanoparticles-enabled signal amplification for sensitive nonenzymatic colorimetric immunodetection of carbohydrate antigen 125, Biosensors and Bioelectronics, 71, (2015), 200-6.
  • Soper J.T., Hunter V.J., Daly L., Tanner M., Creasman W.T., Bast Jr.RC., Preoperative serum tumor-associated antigen levels in women with pelvic masses, Obstetrics and gynecology, 75, (1990), 249-54.
  • Xu Q., Davis J.J., The diagnostic utility of electrochemical impedance, Electroanalysis, 26, (2014), 1249-58.
  • Bhalla V., Carrara S., Sharma P., Nangia Y., Suri C.R., Gold nanoparticles mediated label-free capacitance detection of cardiac troponin I, Sensors and Actuators B: Chemical, 161, (2012), 761-8.
  • Wang Y., Zhang Z., Jain V., Yi J., Mueller S., Sokolov J., Liu Z., Levon K., Rigas B., Rafailovich M.H., Potentiometric sensors based on surface molecular imprinting: Detection of cancer biomarkers and viruses, Sensors and Actuators B: Chemical, 146, (2010), 381-387.
  • Li T., Shu B., Jiang B., Ding L., Qi H., Yang M., Qu F., Ultrasensitive multiplexed protein biomarker detection based on electrochemical tag incorporated polystyrene spheres as label, Sensors and Actuators B: Chemical, 186, (2013), 768-73.
  • Kivrak H., Alal O., Atbas D., Efficient and rapid microwave-assisted route to synthesize Pt-MnOx hydrogen peroxide sensor, Electrochimica acta, 176, (2015), 497-503.
  • Kazıcı H.Ç., Caglar A., Aydogmus T., Aktas N., Kivrak H., Microstructured prealloyed Titanium-Nickel powder as a novel nonenzymatic hydrogen peroxide sensor, Journal of colloid and interface science, 530,(2018), 353-60.
  • Er O.F., Alpaslan D., Dudu T.E., Aktas N., Kivrak H., Novel Cacao oil-based organo-hydrogels to detect carcinoma antigen 125 in serum medium; synthesis, characterization, and electrochemical measurements, Materials Chemistry and Physics, 292, (2022), 126795.
  • Bangar M.A., Shirale D.J., Chen W., Myung N.V., Mulchandani A., Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker, Analytical chemistry, 81, (2009), 2168-75.
  • Chen S., Yuan R., Chai Y., Xu Y., Min L., Li N., A new antibody immobilization technique based on organic polymers protected Prussian blue nanoparticles and gold colloidal nanoparticles for amperometric immunosensors, Sensors and Actuators B: Chemical, 135, (2008), 236-44.
  • Bahavarnia F., Saadati A., Hassanpour S., Hasanzadeh M., Shadjou N., Hassanzadeh A., Paper based immunosensing of ovarian cancer tumor protein CA 125 using novel nano-ink: a new platform for efficient diagnosis of cancer and biomedical analysis using microfluidic paper-based analytical devices (μPAD), International journal of biological macromolecules, 138, (2019), 744-54.
  • Wu L., Yan F., Ju H., An amperometric immunosensor for separation-free immunoassay of CA125 based on its covalent immobilization coupled with thionine on carbon nanofiber, Journal of immunological methods, 322, (2007), 12-9.
  • Li H., Qin J., Li M., Li C., Xu S., Qian L., Yang B., Gold-nanoparticle-decorated boron-doped graphene/BDD electrode for tumor marker sensor, Sensors and Actuators B: Chemical, 302, (2020), 127209.
  • Er O.F., Kivrak H., Ozok O., Çelik S., Kivrak A., A novel electrochemical sensor for monitoring ovarian cancer tumor protein CA 125 on benzothiophene derivative based electrodes, Journal of Electroanalytical Chemistry, 904, (2021), 115854.
  • Er O.F., Kivrak H., Ozok O., Kivrak A., Novel 5-(2-phenylbenzo [b] thiophen-3-yl) furan-2-carbaldehyde based ovarian cancer carbohydrate antigen 125 electrochemical sensor, Materials Chemistry and Physics, 291, (2022), 126560.
  • Kivrak H., Er O.F., Ozok O., Celik S., Kivrak A., Synthesis and characterization of 4-(2-(4-methoxyphenyl) benzo [b] thiophen-3-yl) benzaldehyde for carbohydrate antigen 125 electrochemical detection and molecular docking modeling, Materials Chemistry and Physics, 281, (2022), 125951.
  • Er O.F., Kivrak H., Ozok O., Kivrak A., Superior and Novel Carbohydrate Antigen 125 Electrochemical Sensor Based on 4-(2-(Naphthalen-1-Yl) benzo [b] thiophen-3-Yl) benzaldehyde, Available at SSRN, (2021), 3863113.
  • Hasanzadeh M., Sahmani R., Solhi E., Mokhtarzadeh A., Shadjou N., Mahboob S., Ultrasensitive immunoassay of carcinoma antigen 125 in untreated human plasma samples using gold nanoparticles with flower like morphology: a new platform in early stage diagnosis of ovarian cancer and efficient management, International journal of biological macromolecules, 119, (2018), 913-25.
  • Zheng Y., Wang H., Ma Z., A nanocomposite containing Prussian Blue, platinum nanoparticles and polyaniline for multi-amplification of the signal of voltammetric immunosensors: highly sensitive detection of carcinoma antigen 125, Microchimica Acta, 184, (2017), 4269-77.
  • Tang D., Yuan R., Chai Y., Electrochemical immuno-bioanalysis for carcinoma antigen 125 based on thionine and gold nanoparticles-modified carbon paste interface, Analytica chimica acta, 564, (2006), 158-65.
  • Rebelo T.S., Costa R., Brandão A.T., Silva A.F., Sales M.G.F., Pereira C.M., Molecularly imprinted polymer SPE sensor for analysis of CA-125 on serum, Analytica chimica acta, 1082, (2019), 126-35.
  • Cui Z., Wu D., Zhang Y., Ma H., Li H., Du B., Wei Q., Ju H., Ultrasensitive electrochemical immunosensors for multiplexed determination using mesoporous platinum nanoparticles as nonenzymatic labels, Analytica chimica acta, 807, (2014), 44-50.
  • Ren X., Wang H., Wu D., Fan D., Zhang Y., Du B., Wei Q., Ultrasensitive immunoassay for CA125 detection using acid site compound as signal and enhancer, Talanta, 144, (2015), 535-41.
  • Jafari M., Hasanzadeh M., Solhi E., Hassanpour S., Shadjou N., Mokhtarzadeh A., Jouyban A., Mahboob S., Ultrasensitive bioassay of epitope of Mucin-16 protein (CA 125) in human plasma samples using a novel immunoassay based on silver conductive nano-ink: A new platform in early stage diagnosis of ovarian cancer and efficient management, International journal of biological macromolecules, 126, (2019), 1255-65.
  • Torati S.R., Kasturi K.C., Lim B., Kim C., Hierarchical gold nanostructures modified electrode for electrochemical detection of cancer antigen CA125, Sensors and Actuators B: Chemical, 243, (2017), 64-71.
  • Biswas S., Lan Q., Xie Y., Sun X., Wang Y., Label-Free Electrochemical Immunosensor for Ultrasensitive Detection of Carbohydrate Antigen 125 Based on Antibody-Immobilized Biocompatible MOF-808/CNT, ACS Applied Materials & Interfaces, 13, (2021), 3295-302.
  • Gasparotto G., Costa J.P.C., Costa P.I., Zaghete M.A., Mazon T., Electrochemical immunosensor based on ZnO nanorods-Au nanoparticles nanohybrids for ovarian cancer antigen CA-125 detection, Materials Science and Engineering: C, 76, (2017), 1240-7.
  • Mishra S.B., Mishra A.K., Polymeric hydrogels: A review of recent developments, Polymeric hydrogels as smart biomaterials, (2016), 1-17.
  • Dudu T.E., Alpaslan D., Aktas N., Application of Poly (Agar-Co-Glycerol-Co-Sweet Almond Oil) Based Organo- Hydrogels as a Drug Delivery Material, Journal of Polymers and the Environment, 30, (2021), 1-11.
  • Sahiner N., Alpaslan D., Metal‐ion‐containing ionic liquid hydrogels and their application to hydrogen production, Journal of Applied Polymer Science, 131, (2014), 40183.
  • Vázquez‐González M., Willner I., Stimuli‐Responsive Biomolecule‐Based Hydrogels and Their Applications, Angewandte Chemie International Edition, 59, (2020), 15342-77.
  • Alpaslan D., Dudu T.E., Aktaş N., Synthesis and characterization of novel organo-hydrogel based agar, glycerol and peppermint oil as a natural drug carrier/release material, Materials Science and Engineering: C, 118, (2021), 111534.
  • Alpaslan D., Dudu T.E., Aktas N., Evaluation of poly (agar-co-glycerol-co-castor oil) organo-hydrogel as a controlled release system carrier support material, Polymer Bulletin, 79, (2021), 1-22.
  • Helgeson M.E., Moran S.E., An H.Z., Doyle P.S., Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions, Nature materials, 11, (2012), 344-52.
  • Zohri A-N., Abdel-Gawad K., Saber S., Antibacterial, antidermatophytic and antitoxigenic activities of onion (Allium cepa L.) oil, Microbiological research, 150, (1995), 167-72.
  • Lanzotti V., The analysis of onion and garlic, Journal of chromatography A, 1112, (2006), 3-22.
  • [52]Taleat Z., Ravalli A., Mazloum‐Ardakani M., Marrazza G., CA 125 immunosensor based on poly‐anthranilic acid modified screen‐printed electrodes, Electroanalysis, 25, (2013), 269-77.
  • Wu L., Chen J., Du D., Ju H., Electrochemical immunoassay for CA125 based on cellulose acetate stabilized antigen/colloidal gold nanoparticles membrane, Electrochimica Acta, 51, (2006), 1208-14.
  • Ciucci F., Modeling electrochemical impedance spectroscopy, Current Opinion in Electrochemistry, 13, (2019), 132-9.
  • ER Ö.F., Cavak A., Aldemir A., Kivrak H.D., Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts, MANAS Journal of Engineering, 8, (2020), 90-98.
  • Chang B-Y., Park S-M., Electrochemical impedance spectroscopy, Annual Review of Analytical Chemistryi, 3, (2010), 207-29.
  • Er O.F., Ulas B., Ozok O., Kivrak A., Kivrak H., Design of 2-(4-(2-pentyllbenzo [b] thiophen-3-yl) benzylidene) malononitrile based remarkable organic catalyst towards hydrazine electrooxidation, Journal of Electroanalytical Chemistry, 888, (2021), 115218.
  • Kivrak H., Selçuk K., Er O.F., Aktas N., Nanostructured electrochemical cysteine sensor based on carbon nanotube supported Ru, Pd, and Pt catalysts, Materials Chemistry and Physics, 267, (2021), 124689.
  • ER Ö.F., Ulaş B., Kivrak H.D., Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology, Turkish Journal of Chemistry, 45, (2021), 1173-88.
  • Kaya S., Yilmaz Y., Er O.F., Alpaslan D., Ulas B., Dudu T.E., Kivrak H., Highly Active RuPd Bimetallic Catalysts for Sodium Borohydride Electrooxidation and Hydrolysis, Journal of Electronic Materials, 51, (2021), 403-411.

Novel CA-125 antigen determination in serum by electrochemical methods with onion oil-containing organo-hydrogels

Year 2023, , 124 - 135, 01.07.2023
https://doi.org/10.51354/mjen.1242313

Abstract

CA-125 antigen is a glycoprotein that can be found at distinct levels in blood samples according to the phases of ovarian cancer. Herein, we designed novel onion oil-organo-hydrogels (OOHGs) to detect CA-125 antigen at high sensitivity and selectively via electrochemical methods. OOHGs produced are characterized by swelling analysis and Fourier Transform Infrared Spectroscopy (FT-IR). Cyclic voltammetry (CV), Electro impedance spectroscopy (EIS), and Differential pulse voltammetry (DPV) techniques in the potentiostat triple electron system are used for performing the electrochemical measurements. Performances and electron transfer resistances of OOHGs and OOHG+CA-125s are researched via CV and EIS, and the sensitivity properties such as LOD and LOQ of the sensor are determined via DPV. OOHG-2 among OOHGs produced exhibited the highest performance with 0.8151 mA/cm2 (815.1 A/cm2) value at determining CA-125 in serum medium. Moreover, this electrode is found that exhibit a wide linear range like a 1-500 ng/mL concentration range. The limit of quantification (LOQ) and the lowest of detection (LOD) for the OOHG-2 electrode are calculated as 0.531 U/mL and 0.265 U/mL (S/N=3), respectively. Further, the CA-125 antigen of the OOHG-2 electrode in interference results is observed that can be detected with high selectivity. With these results, it can be noted that the OOHG-2 electrode holds great hope for detection ovarian cancer by electrochemical methods.

References

  • Kulasingam V., Diamandis EP., Strategies for discovering novel cancer biomarkers through utilization of emerging technologies, Nature clinical practice Oncology, 5, (2008), 588-99.
  • Hayes D.F., Bast R.C., Desch C.E., Fritsche Jr.H., Kemeny N.E., Jessup J.M., Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers, Journal of the National Cancer Institute, 88, (1996), 1456-66.
  • Duffy M., Clinical uses of tumor markers: a critical review, Critical reviews in clinical laboratory sciences, 38, (2001), 225-62.
  • Duffy M.J., Tumor markers in clinical practice: a review focusing on common solid cancers, Medical Principles and Practice, 22, (2013), 4-11.
  • Chikkaveeraiah B.V., Bhirde A.A., Morgan N.Y., Eden H.S., Chen X., Electrochemical immunosensors for detection of cancer protein biomarkers, ACS nano, 6, (2012), 6546-61.
  • Wulfkuhle J.D., Liotta L.A., Petricoin E.F., Proteomic applications for the early detection of cancer, Nature reviews cancer, 3, (2003), 267-75.
  • Kingsmore S.F., Multiplexed protein measurement: technologies and applications of protein and antibody arrays, Nature reviews Drug discovery, 5, (2006), 310-21.
  • Reid B.M., Permuth J.B., Sellers T.A., Epidemiology of ovarian cancer: a review, Cancer biology & medicine, 14, (2017), 9.
  • Majd S.M., Salimi A., Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film, Analytica chimica acta, 1000, (2018), 273-82.
  • Diaconu I., Cristea C., Hârceagă V., Marrazza G., Berindan-Neagoe I., Săndulescu R., Electrochemical immunosensors in breast and ovarian cancer, Clinica Chimica Acta, 425, (2013), 128-38.
  • Lahoud R., O'Shea A., El-Mouhayyar C., Atre I., Eurboonyanun K., Harisinghani M., Tumour markers and their utility in imaging of abdominal and pelvic malignancies, Clinical Radiology, 76, (2020), 99-107.
  • Wu S., Xu K., Chen G., Zhang J., Liu Z., Xie X., Identification of serum biomarkers for ovarian cancer using MALDI– TOF-MS combined with magnetic beads, International journal of clinical oncology, 17, (2012), 89-95.
  • Lamberti I., Scarano S., Esposito C.L., Antoccia A., Antonini G., Tanzarella C., Franciscis V.D., Minunni M., In vitro selection of RNA aptamers against CA125 tumor marker in ovarian cancer and its study by optical biosensing, Methods, 97, (2016), 58-68.
  • Chakkarapani S.K., Zhang P., Ahn S., Kang S.H., Total internal reflection plasmonic scattering-based fluorescence-free nanoimmunosensor probe for ultra-sensitive detection of cancer antigen 125, Biosensors and Bioelectronics, 81, (2016), 23-31.
  • Zhao Y., Zheng Y., Zhao C., You J., Qu F., Hollow PDA-Au nanoparticles-enabled signal amplification for sensitive nonenzymatic colorimetric immunodetection of carbohydrate antigen 125, Biosensors and Bioelectronics, 71, (2015), 200-6.
  • Soper J.T., Hunter V.J., Daly L., Tanner M., Creasman W.T., Bast Jr.RC., Preoperative serum tumor-associated antigen levels in women with pelvic masses, Obstetrics and gynecology, 75, (1990), 249-54.
  • Xu Q., Davis J.J., The diagnostic utility of electrochemical impedance, Electroanalysis, 26, (2014), 1249-58.
  • Bhalla V., Carrara S., Sharma P., Nangia Y., Suri C.R., Gold nanoparticles mediated label-free capacitance detection of cardiac troponin I, Sensors and Actuators B: Chemical, 161, (2012), 761-8.
  • Wang Y., Zhang Z., Jain V., Yi J., Mueller S., Sokolov J., Liu Z., Levon K., Rigas B., Rafailovich M.H., Potentiometric sensors based on surface molecular imprinting: Detection of cancer biomarkers and viruses, Sensors and Actuators B: Chemical, 146, (2010), 381-387.
  • Li T., Shu B., Jiang B., Ding L., Qi H., Yang M., Qu F., Ultrasensitive multiplexed protein biomarker detection based on electrochemical tag incorporated polystyrene spheres as label, Sensors and Actuators B: Chemical, 186, (2013), 768-73.
  • Kivrak H., Alal O., Atbas D., Efficient and rapid microwave-assisted route to synthesize Pt-MnOx hydrogen peroxide sensor, Electrochimica acta, 176, (2015), 497-503.
  • Kazıcı H.Ç., Caglar A., Aydogmus T., Aktas N., Kivrak H., Microstructured prealloyed Titanium-Nickel powder as a novel nonenzymatic hydrogen peroxide sensor, Journal of colloid and interface science, 530,(2018), 353-60.
  • Er O.F., Alpaslan D., Dudu T.E., Aktas N., Kivrak H., Novel Cacao oil-based organo-hydrogels to detect carcinoma antigen 125 in serum medium; synthesis, characterization, and electrochemical measurements, Materials Chemistry and Physics, 292, (2022), 126795.
  • Bangar M.A., Shirale D.J., Chen W., Myung N.V., Mulchandani A., Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker, Analytical chemistry, 81, (2009), 2168-75.
  • Chen S., Yuan R., Chai Y., Xu Y., Min L., Li N., A new antibody immobilization technique based on organic polymers protected Prussian blue nanoparticles and gold colloidal nanoparticles for amperometric immunosensors, Sensors and Actuators B: Chemical, 135, (2008), 236-44.
  • Bahavarnia F., Saadati A., Hassanpour S., Hasanzadeh M., Shadjou N., Hassanzadeh A., Paper based immunosensing of ovarian cancer tumor protein CA 125 using novel nano-ink: a new platform for efficient diagnosis of cancer and biomedical analysis using microfluidic paper-based analytical devices (μPAD), International journal of biological macromolecules, 138, (2019), 744-54.
  • Wu L., Yan F., Ju H., An amperometric immunosensor for separation-free immunoassay of CA125 based on its covalent immobilization coupled with thionine on carbon nanofiber, Journal of immunological methods, 322, (2007), 12-9.
  • Li H., Qin J., Li M., Li C., Xu S., Qian L., Yang B., Gold-nanoparticle-decorated boron-doped graphene/BDD electrode for tumor marker sensor, Sensors and Actuators B: Chemical, 302, (2020), 127209.
  • Er O.F., Kivrak H., Ozok O., Çelik S., Kivrak A., A novel electrochemical sensor for monitoring ovarian cancer tumor protein CA 125 on benzothiophene derivative based electrodes, Journal of Electroanalytical Chemistry, 904, (2021), 115854.
  • Er O.F., Kivrak H., Ozok O., Kivrak A., Novel 5-(2-phenylbenzo [b] thiophen-3-yl) furan-2-carbaldehyde based ovarian cancer carbohydrate antigen 125 electrochemical sensor, Materials Chemistry and Physics, 291, (2022), 126560.
  • Kivrak H., Er O.F., Ozok O., Celik S., Kivrak A., Synthesis and characterization of 4-(2-(4-methoxyphenyl) benzo [b] thiophen-3-yl) benzaldehyde for carbohydrate antigen 125 electrochemical detection and molecular docking modeling, Materials Chemistry and Physics, 281, (2022), 125951.
  • Er O.F., Kivrak H., Ozok O., Kivrak A., Superior and Novel Carbohydrate Antigen 125 Electrochemical Sensor Based on 4-(2-(Naphthalen-1-Yl) benzo [b] thiophen-3-Yl) benzaldehyde, Available at SSRN, (2021), 3863113.
  • Hasanzadeh M., Sahmani R., Solhi E., Mokhtarzadeh A., Shadjou N., Mahboob S., Ultrasensitive immunoassay of carcinoma antigen 125 in untreated human plasma samples using gold nanoparticles with flower like morphology: a new platform in early stage diagnosis of ovarian cancer and efficient management, International journal of biological macromolecules, 119, (2018), 913-25.
  • Zheng Y., Wang H., Ma Z., A nanocomposite containing Prussian Blue, platinum nanoparticles and polyaniline for multi-amplification of the signal of voltammetric immunosensors: highly sensitive detection of carcinoma antigen 125, Microchimica Acta, 184, (2017), 4269-77.
  • Tang D., Yuan R., Chai Y., Electrochemical immuno-bioanalysis for carcinoma antigen 125 based on thionine and gold nanoparticles-modified carbon paste interface, Analytica chimica acta, 564, (2006), 158-65.
  • Rebelo T.S., Costa R., Brandão A.T., Silva A.F., Sales M.G.F., Pereira C.M., Molecularly imprinted polymer SPE sensor for analysis of CA-125 on serum, Analytica chimica acta, 1082, (2019), 126-35.
  • Cui Z., Wu D., Zhang Y., Ma H., Li H., Du B., Wei Q., Ju H., Ultrasensitive electrochemical immunosensors for multiplexed determination using mesoporous platinum nanoparticles as nonenzymatic labels, Analytica chimica acta, 807, (2014), 44-50.
  • Ren X., Wang H., Wu D., Fan D., Zhang Y., Du B., Wei Q., Ultrasensitive immunoassay for CA125 detection using acid site compound as signal and enhancer, Talanta, 144, (2015), 535-41.
  • Jafari M., Hasanzadeh M., Solhi E., Hassanpour S., Shadjou N., Mokhtarzadeh A., Jouyban A., Mahboob S., Ultrasensitive bioassay of epitope of Mucin-16 protein (CA 125) in human plasma samples using a novel immunoassay based on silver conductive nano-ink: A new platform in early stage diagnosis of ovarian cancer and efficient management, International journal of biological macromolecules, 126, (2019), 1255-65.
  • Torati S.R., Kasturi K.C., Lim B., Kim C., Hierarchical gold nanostructures modified electrode for electrochemical detection of cancer antigen CA125, Sensors and Actuators B: Chemical, 243, (2017), 64-71.
  • Biswas S., Lan Q., Xie Y., Sun X., Wang Y., Label-Free Electrochemical Immunosensor for Ultrasensitive Detection of Carbohydrate Antigen 125 Based on Antibody-Immobilized Biocompatible MOF-808/CNT, ACS Applied Materials & Interfaces, 13, (2021), 3295-302.
  • Gasparotto G., Costa J.P.C., Costa P.I., Zaghete M.A., Mazon T., Electrochemical immunosensor based on ZnO nanorods-Au nanoparticles nanohybrids for ovarian cancer antigen CA-125 detection, Materials Science and Engineering: C, 76, (2017), 1240-7.
  • Mishra S.B., Mishra A.K., Polymeric hydrogels: A review of recent developments, Polymeric hydrogels as smart biomaterials, (2016), 1-17.
  • Dudu T.E., Alpaslan D., Aktas N., Application of Poly (Agar-Co-Glycerol-Co-Sweet Almond Oil) Based Organo- Hydrogels as a Drug Delivery Material, Journal of Polymers and the Environment, 30, (2021), 1-11.
  • Sahiner N., Alpaslan D., Metal‐ion‐containing ionic liquid hydrogels and their application to hydrogen production, Journal of Applied Polymer Science, 131, (2014), 40183.
  • Vázquez‐González M., Willner I., Stimuli‐Responsive Biomolecule‐Based Hydrogels and Their Applications, Angewandte Chemie International Edition, 59, (2020), 15342-77.
  • Alpaslan D., Dudu T.E., Aktaş N., Synthesis and characterization of novel organo-hydrogel based agar, glycerol and peppermint oil as a natural drug carrier/release material, Materials Science and Engineering: C, 118, (2021), 111534.
  • Alpaslan D., Dudu T.E., Aktas N., Evaluation of poly (agar-co-glycerol-co-castor oil) organo-hydrogel as a controlled release system carrier support material, Polymer Bulletin, 79, (2021), 1-22.
  • Helgeson M.E., Moran S.E., An H.Z., Doyle P.S., Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions, Nature materials, 11, (2012), 344-52.
  • Zohri A-N., Abdel-Gawad K., Saber S., Antibacterial, antidermatophytic and antitoxigenic activities of onion (Allium cepa L.) oil, Microbiological research, 150, (1995), 167-72.
  • Lanzotti V., The analysis of onion and garlic, Journal of chromatography A, 1112, (2006), 3-22.
  • [52]Taleat Z., Ravalli A., Mazloum‐Ardakani M., Marrazza G., CA 125 immunosensor based on poly‐anthranilic acid modified screen‐printed electrodes, Electroanalysis, 25, (2013), 269-77.
  • Wu L., Chen J., Du D., Ju H., Electrochemical immunoassay for CA125 based on cellulose acetate stabilized antigen/colloidal gold nanoparticles membrane, Electrochimica Acta, 51, (2006), 1208-14.
  • Ciucci F., Modeling electrochemical impedance spectroscopy, Current Opinion in Electrochemistry, 13, (2019), 132-9.
  • ER Ö.F., Cavak A., Aldemir A., Kivrak H.D., Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts, MANAS Journal of Engineering, 8, (2020), 90-98.
  • Chang B-Y., Park S-M., Electrochemical impedance spectroscopy, Annual Review of Analytical Chemistryi, 3, (2010), 207-29.
  • Er O.F., Ulas B., Ozok O., Kivrak A., Kivrak H., Design of 2-(4-(2-pentyllbenzo [b] thiophen-3-yl) benzylidene) malononitrile based remarkable organic catalyst towards hydrazine electrooxidation, Journal of Electroanalytical Chemistry, 888, (2021), 115218.
  • Kivrak H., Selçuk K., Er O.F., Aktas N., Nanostructured electrochemical cysteine sensor based on carbon nanotube supported Ru, Pd, and Pt catalysts, Materials Chemistry and Physics, 267, (2021), 124689.
  • ER Ö.F., Ulaş B., Kivrak H.D., Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology, Turkish Journal of Chemistry, 45, (2021), 1173-88.
  • Kaya S., Yilmaz Y., Er O.F., Alpaslan D., Ulas B., Dudu T.E., Kivrak H., Highly Active RuPd Bimetallic Catalysts for Sodium Borohydride Electrooxidation and Hydrolysis, Journal of Electronic Materials, 51, (2021), 403-411.
There are 60 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ömer Er 0000-0002-7179-726X

Duygu Alpaslan 0000-0002-6007-3397

Tuba Erşen Dudu 0000-0001-5564-2834

Hilal Demir Kıvrak 0000-0001-8001-7854

Early Pub Date June 23, 2023
Publication Date July 1, 2023
Published in Issue Year 2023

Cite

APA Er, Ö., Alpaslan, D., Erşen Dudu, T., Demir Kıvrak, H. (2023). Novel CA-125 antigen determination in serum by electrochemical methods with onion oil-containing organo-hydrogels. MANAS Journal of Engineering, 11(1), 124-135. https://doi.org/10.51354/mjen.1242313
AMA Er Ö, Alpaslan D, Erşen Dudu T, Demir Kıvrak H. Novel CA-125 antigen determination in serum by electrochemical methods with onion oil-containing organo-hydrogels. MJEN. July 2023;11(1):124-135. doi:10.51354/mjen.1242313
Chicago Er, Ömer, Duygu Alpaslan, Tuba Erşen Dudu, and Hilal Demir Kıvrak. “Novel CA-125 Antigen Determination in Serum by Electrochemical Methods With Onion Oil-Containing Organo-Hydrogels”. MANAS Journal of Engineering 11, no. 1 (July 2023): 124-35. https://doi.org/10.51354/mjen.1242313.
EndNote Er Ö, Alpaslan D, Erşen Dudu T, Demir Kıvrak H (July 1, 2023) Novel CA-125 antigen determination in serum by electrochemical methods with onion oil-containing organo-hydrogels. MANAS Journal of Engineering 11 1 124–135.
IEEE Ö. Er, D. Alpaslan, T. Erşen Dudu, and H. Demir Kıvrak, “Novel CA-125 antigen determination in serum by electrochemical methods with onion oil-containing organo-hydrogels”, MJEN, vol. 11, no. 1, pp. 124–135, 2023, doi: 10.51354/mjen.1242313.
ISNAD Er, Ömer et al. “Novel CA-125 Antigen Determination in Serum by Electrochemical Methods With Onion Oil-Containing Organo-Hydrogels”. MANAS Journal of Engineering 11/1 (July 2023), 124-135. https://doi.org/10.51354/mjen.1242313.
JAMA Er Ö, Alpaslan D, Erşen Dudu T, Demir Kıvrak H. Novel CA-125 antigen determination in serum by electrochemical methods with onion oil-containing organo-hydrogels. MJEN. 2023;11:124–135.
MLA Er, Ömer et al. “Novel CA-125 Antigen Determination in Serum by Electrochemical Methods With Onion Oil-Containing Organo-Hydrogels”. MANAS Journal of Engineering, vol. 11, no. 1, 2023, pp. 124-35, doi:10.51354/mjen.1242313.
Vancouver Er Ö, Alpaslan D, Erşen Dudu T, Demir Kıvrak H. Novel CA-125 antigen determination in serum by electrochemical methods with onion oil-containing organo-hydrogels. MJEN. 2023;11(1):124-35.

Manas Journal of Engineering 

16155