Research Article
BibTex RIS Cite
Year 2023, , 92 - 104, 01.07.2023
https://doi.org/10.51354/mjen.1279695

Abstract

References

  • F. J. Heiligtag and M. Niederberger, ‘The fascinating world of nanoparticle research’, Mater. Today, vol. 16, no. 7–8, pp. 262–271, 2013, doi: 10.1016/j.mattod.2013.07.004.
  • M. De, P. S. Ghosh, and V. M. Rotello, ‘Applications of nanoparticles in biology’, Adv. Mater., vol. 20, no. 22, pp. 4225–4241, 2008, doi: 10.1002/adma.200703183.
  • S. Shrivastava and D. Dash, ‘Applying Nanotechnology to Human Health: Revolution in Biomedical Sciences’, J. Nanotechnol., vol. 2009, pp. 1–14, 2009, doi: 10.1155/2009/184702.
  • S. S. Sana et al., ‘Recent advances in essential oils-based metal nanoparticles: A review on recent developments and biopharmaceutical applications’, J. Mol. Liq., vol. 333, p. 115951, 2021, doi: 10.1016/j.molliq.2021.115951.
  • P. Alexandridis and M. Tsianou, ‘Block copolymer-directed metal nanoparticle morphogenesis and organization’, Eur. Polym. J., vol. 47, no. 4, pp. 569–583, 2011, doi: 10.1016/j.eurpolymj.2010.10.021.
  • V. Sharma et al., ‘Nanoparticles as Fingermark Sensors’, TrAC Trends Anal. Chem., vol. 143, p. 116378, 2021, doi: 10.1016/j.trac.2021.116378.
  • A. Pawar, S. Thakkar, and M. Misra, ‘A bird’s eye view of nanoparticles prepared by electrospraying: advancements in drug delivery field’, J. Control. Release, vol. 286, no. July, pp. 179–200, 2018, doi: 10.1016/j.jconrel.2018.07.036.
  • K. McNamara and S. A. M. Tofail, ‘Nanoparticles in biomedical applications’, Adv. Phys. X, vol. 2, no. 1, pp. 54–88, 2017, doi: 10.1080/23746149.2016.1254570.
  • M. X. Zhao and E. Z. Zeng, ‘Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging’, Nanoscale Res. Lett., vol. 10, no. 1, pp. 1–9, 2015, doi: 10.1186/s11671-015- 0873-8.
  • M. Zargar et al., ‘Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L.’, Molecules, vol. 16, no. 8, pp. 6667–6676, 2011, doi: 10.3390/molecules16086667.
  • G. Yang et al., ‘Understanding the relationship between particle size and ultrasonic treatment during the synthesis of metal nanoparticles’, Ultrason. Sonochem., vol. 73, p. 105497, 2021, doi: 10.1016/j.ultsonch.2021.105497.
  • Q. Zhang, Y. Zhang, Y. Li, P. Ding, S. Xu, and J. Cao, ‘Green synthesis of magnetite nanoparticle and its regulatory effect on fermentative hydrogen production from lignocellulosic hydrolysate by Klebsiella sp.’, Int. J. Hydrogen Energy, vol. 46, no. 39, pp. 20413–20424, 2021, doi: 10.1016/j.ijhydene.2021.03.142.
  • K. Fukuda et al., ‘Exfoliated nanosheet crystallite of cesium tungstate with 2D pyrochlore structure: Synthesis, characterization, and photochromic properties’, ACS Nano, vol. 2, no. 8, pp. 1689–1695, 2008, doi: 10.1021/nn800184w.
  • U. Nithiyanantham, S. R. Ede, S. Anantharaj, and S. Kundu, ‘Self-assembled NiWO4 nanoparticles into chain- like aggregates on DNA scaffold with pronounced catalytic and supercapacitor activities’, Cryst. Growth Des., vol. 15, no. 2, pp. 673–686, 2015, doi: 10.1021/cg501366d.
  • L. Zhang, Y. Man, and Y. Zhu, ‘Effects of Mo replacement on the structure and visible-light-induced photocatalytic performances of Bi2WO6 photocatalyst’, ACS Catal., vol. 1, no. 8, pp. 841–848, 2011, doi: 10.1021/cs200155z.
  • H. Eranjaneya and G. T. Chandrappa, ‘Solution Combustion Synthesis of Nano ZnWO4 Photocatalyst’, Trans. Indian Ceram. Soc., vol. 75, no. 2, pp. 133–137, 2016, doi: 10.1080/0371750X.2016.1181990.
  • E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, ‘The golden age: Gold nanoparticles for biomedicine’, Chem. Soc. Rev., vol. 41, no. 7, pp. 2740–2779, 2012, doi: 10.1039/c1cs15237h.
  • [A. Ali et al., ‘Synthesis, characterization, applications, and challenges of iron oxide nanoparticles’, Nanotechnol. Sci. Appl., vol. 9, pp. 49–67, 2016, doi: 10.2147/NSA.S99986.
  • R. A. Ismail, S. A. Zaidan, and R. M. Kadhim, ‘Preparation and characterization of aluminum oxide nanoparticles by laser ablation in liquid as passivating and anti-reflection coating for silicon photodiodes’, Appl. Nanosci., vol. 7, no. 7, pp. 477–487, 2017, doi: 10.1007/s13204-017-0580-0.
  • W. M. M. Mahmoud, T. Rastogi, and K. Kümmerer, ‘Application of titanium dioxide nanoparticles as a photocatalyst for the removal of micropollutants such as pharmaceuticals from water’, Curr. Opin. Green Sustain. Chem., vol. 6, pp. 1–10, 2017, doi: 10.1016/j.cogsc.2017.04.001.
  • M. O. Amin, M. Madkour, and E. Al-Hetlani, ‘Metal oxide nanoparticles for latent fingerprint visualization and analysis of small drug molecules using surface-assisted laser desorption/ionization mass spectrometry’, Anal. Bioanal. Chem., vol. 410, no. 20, pp. 4815–4827, 2018, doi: 10.1007/s00216-018-1119-2.
  • N. Krishna, G. N. Kumar, T. Neethu, R. John, S. R. Babu, and S. Smitha Chandran, ‘One Pot Green Synthesis of Silver Nanoparticles with Multiple Applications’, Mater. Today Proc., vol. 5, no. 9, pp. 20567–20571, 2018, doi: 10.1016/j.matpr.2018.06.435.
  • A.T.A. Ibrahim, ‘Toxicological impact of green synthesized silver nanoparticles and protective role of different selenium type on Oreochromis niloticus: hematological and biochemical response’, J. Trace Elem. Med. Biol., vol. 61, no. November 2019, p. 126507, 2020, doi: 10.1016/j.jtemb.2020.126507.
  • S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, ‘Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract’, Biotechnol. Prog., vol. 22, no. 2, pp. 577–583, 2006, doi: 10.1021/bp0501423.
  • P. Rani, L. Trivedi, S. Singh, A. Singh, and G. Shukla, ‘Materials Today : Proceedings Green synthesis of silver nanoparticles by Cassytha filiformis L . extract and its characterization’, Mater. Today Proc., no. xxxx, 2021, doi: 10.1016/j.matpr.2021.07.166.
  • A. Umer, S. Naveed, N. Ramzan, and M. S. Rafique, ‘Selection of a suitable method for the synthesis of copper nanoparticles’, Nano, vol. 7, no. 5, 2012, doi: 10.1142/S1793292012300058.
  • A. Umer, S. Naveed, N. Ramzan, M. S. Rafique, and M. Imran, ‘A green method for the synthesis of copper nanoparticles using l-ascorbic acid’, Rev. Mater., vol. 19, no. 3, pp. 197–203, 2014, doi: 10.1590/S1517- 70762014000300002.
  • L. Malassis, R. Dreyfus, R. J. Murphy, L. A. Hough, B. Donnio, and C. B. Murray, ‘One-step green synthesis of gold and silver nanoparticles with ascorbic acid and their versatile surface post-functionalization’, RSC Adv., vol. 6, no. 39, pp. 33092–33100, 2016, doi: 10.1039/c6ra00194g.
  • D. Dutta and B. M. Das, ‘Scope of green nanotechnology towards amalgamation of green chemistry for cleaner environment: A review on synthesis and applications of green nanoparticles’, Environ. Nanotechnology, Monit. Manag., vol. 15, no. December 2020, p. 100418, 2021, doi: 10.1016/j.enmm.2020.100418.
  • P. Rajiv, B. Bavadharani, M. N. Kumar, and P. Vanathi, ‘Synthesis and characterization of biogenic iron oxide nanoparticles using green chemistry approach and evaluating their biological activities’, Biocatal. Agric. Biotechnol., vol. 12, no. June, pp. 45–49, 2017, doi: 10.1016/j.bcab.2017.08.015.
  • A. De, R. Das, P. Jain, and H. Kaur, ‘Green chemistry-assisted synthesis of CuO nanoparticles: Reaction optimization, DNA cleavage, and DNA binding studies’, Mater. Today Proc., no. xxxx, pp. 1–4, 2020, doi: 10.1016/j.matpr.2020.10.955.
  • T. Naseem and T. Durrani, ‘The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review’, Environ. Chem. Ecotoxicol., vol. 3, pp. 59–75, 2021, doi: 10.1016/j.enceco.2020.12.001.
  • [H. D. B. Jenkins and K. P. Thakur, ‘Reappraisal of thermochemical radii for complex ions’, J. Chem. Educ., vol. 56, no. 9, pp. 576–577, 1979, doi: 10.1021/ed056p576.
  • R.D. Shannon, ‘Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides’, Acta Cryst., vol. A, no. 32, pp. 751–767, 1976, doi: 10.1107/S0567739476001551.

Green chemistry assisted nanoscale synthesis and structural characterization of some transition metal cations

Year 2023, , 92 - 104, 01.07.2023
https://doi.org/10.51354/mjen.1279695

Abstract

Nanoparticle studies are groundbreaking today, largely due to unpredictable changes in particle size and surface properties. Therefore, nanoparticles are considered as building blocks in optoelectronics, pharmaceuticals, nuclear energy, bioengineering, biomedicine and industrial applications. Today, the importance of environmentally friendly methods is increasing. The use of the green synthesis method, which adopts an economic synthesis approach that will reduce resource and energy consumption and do not harm the environment, is also encouraged in every field. In the study, biosafe ascorbic acid was used as an alternative reagent (agent) to the chemical reduction method. The method process performed with the reagent selected for nanoparticle synthesis has ensured that it is green synthesis, which is adopted as non-toxic and environmentally friendly. In this study, nanoparticles were synthesized by reducing the sulphate, nitrate, chloride and acetate salts of Cu(II), Ni(II), Co(II), Zn(II) and Mn(II) transition metals with the reducing agent ascorbic acid compound. It is aimed to investigate the effects of the same metal cations and different anion salts on nanoparticle synthesis. Depending on the radius ratios and solubility values of metal cations and anions, the nanoparticle obtained from Ni(CH3COO)2 salt has the smallest radius. Nano metal particles with the largest radius were obtained as a result of reduction from Co(NO3)2 salt. The characterization of the synthesized nanoparticles were recorded by particle size analysis and scanning electron microscopy (SEM) images.

References

  • F. J. Heiligtag and M. Niederberger, ‘The fascinating world of nanoparticle research’, Mater. Today, vol. 16, no. 7–8, pp. 262–271, 2013, doi: 10.1016/j.mattod.2013.07.004.
  • M. De, P. S. Ghosh, and V. M. Rotello, ‘Applications of nanoparticles in biology’, Adv. Mater., vol. 20, no. 22, pp. 4225–4241, 2008, doi: 10.1002/adma.200703183.
  • S. Shrivastava and D. Dash, ‘Applying Nanotechnology to Human Health: Revolution in Biomedical Sciences’, J. Nanotechnol., vol. 2009, pp. 1–14, 2009, doi: 10.1155/2009/184702.
  • S. S. Sana et al., ‘Recent advances in essential oils-based metal nanoparticles: A review on recent developments and biopharmaceutical applications’, J. Mol. Liq., vol. 333, p. 115951, 2021, doi: 10.1016/j.molliq.2021.115951.
  • P. Alexandridis and M. Tsianou, ‘Block copolymer-directed metal nanoparticle morphogenesis and organization’, Eur. Polym. J., vol. 47, no. 4, pp. 569–583, 2011, doi: 10.1016/j.eurpolymj.2010.10.021.
  • V. Sharma et al., ‘Nanoparticles as Fingermark Sensors’, TrAC Trends Anal. Chem., vol. 143, p. 116378, 2021, doi: 10.1016/j.trac.2021.116378.
  • A. Pawar, S. Thakkar, and M. Misra, ‘A bird’s eye view of nanoparticles prepared by electrospraying: advancements in drug delivery field’, J. Control. Release, vol. 286, no. July, pp. 179–200, 2018, doi: 10.1016/j.jconrel.2018.07.036.
  • K. McNamara and S. A. M. Tofail, ‘Nanoparticles in biomedical applications’, Adv. Phys. X, vol. 2, no. 1, pp. 54–88, 2017, doi: 10.1080/23746149.2016.1254570.
  • M. X. Zhao and E. Z. Zeng, ‘Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging’, Nanoscale Res. Lett., vol. 10, no. 1, pp. 1–9, 2015, doi: 10.1186/s11671-015- 0873-8.
  • M. Zargar et al., ‘Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L.’, Molecules, vol. 16, no. 8, pp. 6667–6676, 2011, doi: 10.3390/molecules16086667.
  • G. Yang et al., ‘Understanding the relationship between particle size and ultrasonic treatment during the synthesis of metal nanoparticles’, Ultrason. Sonochem., vol. 73, p. 105497, 2021, doi: 10.1016/j.ultsonch.2021.105497.
  • Q. Zhang, Y. Zhang, Y. Li, P. Ding, S. Xu, and J. Cao, ‘Green synthesis of magnetite nanoparticle and its regulatory effect on fermentative hydrogen production from lignocellulosic hydrolysate by Klebsiella sp.’, Int. J. Hydrogen Energy, vol. 46, no. 39, pp. 20413–20424, 2021, doi: 10.1016/j.ijhydene.2021.03.142.
  • K. Fukuda et al., ‘Exfoliated nanosheet crystallite of cesium tungstate with 2D pyrochlore structure: Synthesis, characterization, and photochromic properties’, ACS Nano, vol. 2, no. 8, pp. 1689–1695, 2008, doi: 10.1021/nn800184w.
  • U. Nithiyanantham, S. R. Ede, S. Anantharaj, and S. Kundu, ‘Self-assembled NiWO4 nanoparticles into chain- like aggregates on DNA scaffold with pronounced catalytic and supercapacitor activities’, Cryst. Growth Des., vol. 15, no. 2, pp. 673–686, 2015, doi: 10.1021/cg501366d.
  • L. Zhang, Y. Man, and Y. Zhu, ‘Effects of Mo replacement on the structure and visible-light-induced photocatalytic performances of Bi2WO6 photocatalyst’, ACS Catal., vol. 1, no. 8, pp. 841–848, 2011, doi: 10.1021/cs200155z.
  • H. Eranjaneya and G. T. Chandrappa, ‘Solution Combustion Synthesis of Nano ZnWO4 Photocatalyst’, Trans. Indian Ceram. Soc., vol. 75, no. 2, pp. 133–137, 2016, doi: 10.1080/0371750X.2016.1181990.
  • E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, ‘The golden age: Gold nanoparticles for biomedicine’, Chem. Soc. Rev., vol. 41, no. 7, pp. 2740–2779, 2012, doi: 10.1039/c1cs15237h.
  • [A. Ali et al., ‘Synthesis, characterization, applications, and challenges of iron oxide nanoparticles’, Nanotechnol. Sci. Appl., vol. 9, pp. 49–67, 2016, doi: 10.2147/NSA.S99986.
  • R. A. Ismail, S. A. Zaidan, and R. M. Kadhim, ‘Preparation and characterization of aluminum oxide nanoparticles by laser ablation in liquid as passivating and anti-reflection coating for silicon photodiodes’, Appl. Nanosci., vol. 7, no. 7, pp. 477–487, 2017, doi: 10.1007/s13204-017-0580-0.
  • W. M. M. Mahmoud, T. Rastogi, and K. Kümmerer, ‘Application of titanium dioxide nanoparticles as a photocatalyst for the removal of micropollutants such as pharmaceuticals from water’, Curr. Opin. Green Sustain. Chem., vol. 6, pp. 1–10, 2017, doi: 10.1016/j.cogsc.2017.04.001.
  • M. O. Amin, M. Madkour, and E. Al-Hetlani, ‘Metal oxide nanoparticles for latent fingerprint visualization and analysis of small drug molecules using surface-assisted laser desorption/ionization mass spectrometry’, Anal. Bioanal. Chem., vol. 410, no. 20, pp. 4815–4827, 2018, doi: 10.1007/s00216-018-1119-2.
  • N. Krishna, G. N. Kumar, T. Neethu, R. John, S. R. Babu, and S. Smitha Chandran, ‘One Pot Green Synthesis of Silver Nanoparticles with Multiple Applications’, Mater. Today Proc., vol. 5, no. 9, pp. 20567–20571, 2018, doi: 10.1016/j.matpr.2018.06.435.
  • A.T.A. Ibrahim, ‘Toxicological impact of green synthesized silver nanoparticles and protective role of different selenium type on Oreochromis niloticus: hematological and biochemical response’, J. Trace Elem. Med. Biol., vol. 61, no. November 2019, p. 126507, 2020, doi: 10.1016/j.jtemb.2020.126507.
  • S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, ‘Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract’, Biotechnol. Prog., vol. 22, no. 2, pp. 577–583, 2006, doi: 10.1021/bp0501423.
  • P. Rani, L. Trivedi, S. Singh, A. Singh, and G. Shukla, ‘Materials Today : Proceedings Green synthesis of silver nanoparticles by Cassytha filiformis L . extract and its characterization’, Mater. Today Proc., no. xxxx, 2021, doi: 10.1016/j.matpr.2021.07.166.
  • A. Umer, S. Naveed, N. Ramzan, and M. S. Rafique, ‘Selection of a suitable method for the synthesis of copper nanoparticles’, Nano, vol. 7, no. 5, 2012, doi: 10.1142/S1793292012300058.
  • A. Umer, S. Naveed, N. Ramzan, M. S. Rafique, and M. Imran, ‘A green method for the synthesis of copper nanoparticles using l-ascorbic acid’, Rev. Mater., vol. 19, no. 3, pp. 197–203, 2014, doi: 10.1590/S1517- 70762014000300002.
  • L. Malassis, R. Dreyfus, R. J. Murphy, L. A. Hough, B. Donnio, and C. B. Murray, ‘One-step green synthesis of gold and silver nanoparticles with ascorbic acid and their versatile surface post-functionalization’, RSC Adv., vol. 6, no. 39, pp. 33092–33100, 2016, doi: 10.1039/c6ra00194g.
  • D. Dutta and B. M. Das, ‘Scope of green nanotechnology towards amalgamation of green chemistry for cleaner environment: A review on synthesis and applications of green nanoparticles’, Environ. Nanotechnology, Monit. Manag., vol. 15, no. December 2020, p. 100418, 2021, doi: 10.1016/j.enmm.2020.100418.
  • P. Rajiv, B. Bavadharani, M. N. Kumar, and P. Vanathi, ‘Synthesis and characterization of biogenic iron oxide nanoparticles using green chemistry approach and evaluating their biological activities’, Biocatal. Agric. Biotechnol., vol. 12, no. June, pp. 45–49, 2017, doi: 10.1016/j.bcab.2017.08.015.
  • A. De, R. Das, P. Jain, and H. Kaur, ‘Green chemistry-assisted synthesis of CuO nanoparticles: Reaction optimization, DNA cleavage, and DNA binding studies’, Mater. Today Proc., no. xxxx, pp. 1–4, 2020, doi: 10.1016/j.matpr.2020.10.955.
  • T. Naseem and T. Durrani, ‘The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review’, Environ. Chem. Ecotoxicol., vol. 3, pp. 59–75, 2021, doi: 10.1016/j.enceco.2020.12.001.
  • [H. D. B. Jenkins and K. P. Thakur, ‘Reappraisal of thermochemical radii for complex ions’, J. Chem. Educ., vol. 56, no. 9, pp. 576–577, 1979, doi: 10.1021/ed056p576.
  • R.D. Shannon, ‘Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides’, Acta Cryst., vol. A, no. 32, pp. 751–767, 1976, doi: 10.1107/S0567739476001551.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Mustafa Küyükoğlu This is me 0009-0001-6485-5126

Melda Bolat Bülter 0000-0002-6923-322X

Dursun Ali Köse 0000-0003-4767-6799

Early Pub Date June 23, 2023
Publication Date July 1, 2023
Published in Issue Year 2023

Cite

APA Küyükoğlu, M., Bolat Bülter, M., & Köse, D. A. (2023). Green chemistry assisted nanoscale synthesis and structural characterization of some transition metal cations. MANAS Journal of Engineering, 11(1), 92-104. https://doi.org/10.51354/mjen.1279695
AMA Küyükoğlu M, Bolat Bülter M, Köse DA. Green chemistry assisted nanoscale synthesis and structural characterization of some transition metal cations. MJEN. July 2023;11(1):92-104. doi:10.51354/mjen.1279695
Chicago Küyükoğlu, Mustafa, Melda Bolat Bülter, and Dursun Ali Köse. “Green Chemistry Assisted Nanoscale Synthesis and Structural Characterization of Some Transition Metal Cations”. MANAS Journal of Engineering 11, no. 1 (July 2023): 92-104. https://doi.org/10.51354/mjen.1279695.
EndNote Küyükoğlu M, Bolat Bülter M, Köse DA (July 1, 2023) Green chemistry assisted nanoscale synthesis and structural characterization of some transition metal cations. MANAS Journal of Engineering 11 1 92–104.
IEEE M. Küyükoğlu, M. Bolat Bülter, and D. A. Köse, “Green chemistry assisted nanoscale synthesis and structural characterization of some transition metal cations”, MJEN, vol. 11, no. 1, pp. 92–104, 2023, doi: 10.51354/mjen.1279695.
ISNAD Küyükoğlu, Mustafa et al. “Green Chemistry Assisted Nanoscale Synthesis and Structural Characterization of Some Transition Metal Cations”. MANAS Journal of Engineering 11/1 (July 2023), 92-104. https://doi.org/10.51354/mjen.1279695.
JAMA Küyükoğlu M, Bolat Bülter M, Köse DA. Green chemistry assisted nanoscale synthesis and structural characterization of some transition metal cations. MJEN. 2023;11:92–104.
MLA Küyükoğlu, Mustafa et al. “Green Chemistry Assisted Nanoscale Synthesis and Structural Characterization of Some Transition Metal Cations”. MANAS Journal of Engineering, vol. 11, no. 1, 2023, pp. 92-104, doi:10.51354/mjen.1279695.
Vancouver Küyükoğlu M, Bolat Bülter M, Köse DA. Green chemistry assisted nanoscale synthesis and structural characterization of some transition metal cations. MJEN. 2023;11(1):92-104.

Manas Journal of Engineering 

16155