Research Article
BibTex RIS Cite
Year 2021, , 82 - 96, 30.04.2021
https://doi.org/10.51354/mjen.780716

Abstract

References

  • Caputo, M., \enquote{Elasticit$\grave{a}$e Dissipazione}, Bologna, Zanichelli, 1969.
  • Moaddy, K., Momani, S., Hashim, I., \enquote{The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics}, Comput. Math. Appl., 61, (2011), 1209--1216.
  • Hosseini, V.R., Chen, W., Avazzadeh, Z., \enquote{Numerical solution of fractional telegraph equation by using radial basis functions}, Eng. Anal. Bound. Elem., 38, (2014), 31--39.
  • Faraji, M, Ansari, O.R., \enquote{Linear and nonlinear vibrations of fractional viscoelastic Timoshenko nanobeams considering surface energy effects}, Appl. Math. Model., 43, (2017), 337--350.
  • Arqub, O.A., \enquote{Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm}, Int. J. Numer. Method H., 28(4), (2018), 828--856.
  • Koleva, M.N., Vulkov, L.G., \enquote{Numerical solution of time-fractional Black--Scholes equation}, Comp. Appl. Math., 36, (2017), 1699--1715.
  • Soori, Z., Aminataei, A., \enquote{A new approximation to Caputo-type fractional diffusion and advection equations on non-uniform meshes}, Appl. Numer. Math., 144, (2019), 21--41.
  • K\"{u}rk\c{c}\"{u}, \"{O}.K., Aslan, E., Sezer, M., \enquote{An advanced method with convergence analysis for solving space-time fractional partial differential equations with multi delays}, Eur. Phys. J. Plus, 134, (2019), 393.
  • Dehestani, H., Ordokhani, Y., Razzaghi, M., \enquote{A numerical technique for solving various kinds of fractional partial differential equations via Genocchi hybrid functions}, Rev. R. Acad. Cienc. Exactas, Fis. Nat. Madr., 113, (2019), 3297--3321.
  • Rihan, F.A., \enquote{Computational methods for delay parabolic and time-fractional partial differential equations}, Numer. Methods Partial Differ. Equ., 26, (2010), 1556--1571.
  • Usman, M., Hamid, M., Zubair, T., Haq, R.U., Wang, W., Liu, M.B., \enquote{Novel operational matrices-based method for solving fractional-order delay differential equations via shifted Gegenbauer polynomials}, Appl. Math. Comput., 372, (2020), 124985.
  • Pozar, D.M., \enquote{Microwave Engineering} in Addison-Wesley, 1990.
  • Mainardi, F., Paradisi, P., \enquote{Fractional diffusive waves}, J. Comput. Acoust., 9(4), (2001), 1417--1436.
  • Abdou, M.A., \enquote{Adomian decomposition method for solving the telegraph equation in charged particle transport}, J. Quant. Spectrosc. Radiat. Transf., 95, (2005), 407--414.
  • Orsingher, E., Beghin, L., \enquote{Time-fractional telegraph equations and telegraph processes with brownian time}, Probab. Theory Relat. Fields, 128, (2004), 141--160.
  • Kumar, A., Bhardwaj, A., Dubey, S., \enquote{A local meshless method to approximate the time-fractional telegraph equation}, Eng. Comput., (2020), https://doi.org/10.1007/s00366-020-01006-x.
  • Wang, Y.L., Du, M.-J., Temuer, C.-L., Tian, D., \enquote{Using reproducing kernel for solving a class of time-fractional telegraph equation with initial value conditions}, Int. J. Comput. Math., 95(8), (2018), 1609--1621.
  • Pandey, R.K., Mishra, H.K., \enquote{Numerical simulation for solution of space-time fractional telegraphs equations with local fractional derivatives via HAFSTM}, New Astronomy, 57, (2017), 82--93.
  • Y\"{u}zba\c{s}\i, \c{S}., Kara\c{c}ay\i r, M., \enquote{A Galerkin-type method to solve one-dimensional telegraph equation using collocation points in initial and boundary conditions}, Int. J. Comput. Methods, 15(1), (2018), 1850031, (16 pages).
  • Dehghan, M., Shokri, A., \enquote{A numerical method for solving the hyperbolic telegraph equation}, Numer. Methods Partial Differ. Equ., 24, (2008), 1080--1093.
  • Dehghan, M., Lakestani, M., \enquote{The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation}, Numer. Methods Partial Differ. Equ., 25, (2009), 931--938.
  • Pandit, S., Kumar, M., Tiwari, S., \enquote{Numerical simulation of second-order hyperbolic telegraph type equations with variable coefficients}, Comput. Phys. Commun., 187, (2015), 83--90.
  • Sharifi, S., Rashidinia, J., \enquote{Numerical solution of hyperbolic telegraph equation by cubic B-spline collocation method}, Appl. Math. Comput., 281, (2016), 28--38.
  • Delannoy, H., \enquote{Emploi de l'echiquier pour la resolution de certains problµemes de probabilites}, Assoc. Franc. Bordeaux, 24, (1895), 70--90.
  • Banderier, C., Schwer, S., \enquote{Why Delannoy numbers?}, J. Stat. Plan. Infer., 135(1), (2005), 40--54.
  • Weisstein, E.W., \enquote{Delannoy Number}, from MathWorld--A Wolfram Web Resource, https://mathworld.wolfram.com/DelannoyNumber.html.
  • Comtet, L., \enquote{Advanced Combinatorics: The Art of Finite and Infinite Expansions}, Rev. enl. ed. Dordrecht, Netherlands, Reidel, pp. 80-81, 1974.
  • Sulanke, R.A., \enquote{Objects counted by the central Delannoy numbers}, J. Integer Seq., 6, (2003), Article 03.1.5.
  • Peart, P., Woan, W.-J., \enquote{A bijective proof of the Delannoy recurrence}, Congressus Numerantium, 158, (2002), 29--33.
  • Hetyei, G., \enquote{Shifted Jacobi polynomials and Delannoy numbers}, (2009), ArXiv e-prints arXiv:0909.5512v2.
  • Sun, Z., \enquote{Congruences involving generalized central trinomial coefficients}, Sci. China Math., 57, (2014), 1375--1400.
  • Sun, Z.-W., \enquote{On Delannoy numbers and Schr\"{o}der numbers}, J. Number Theory, 131, (2011), 2387--2397.
  • Torres, A., Cabada, A., Nieto, J.J., \enquote{An exact formula for the number of alignments between two DNA sequences}, DNA Seq., 14, (2003), 227--430.
  • Guo, V.J.W., Zeng, J., \enquote{Proof of some conjectures of Z.-W. Sun on congruences for Apery polynomials}, J. Number Theory, 132, (2012), 1731--1740.
  • Abramowitz, M., Stegun, I.A., \enquote{Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables}, Nat. Bureau of Standards, Appl. Math. Series, 55, 1964.

A novel numerical implementation for solving time fractional telegraph differential equations having multiple space and time delays via Delannoy polynomial

Year 2021, , 82 - 96, 30.04.2021
https://doi.org/10.51354/mjen.780716

Abstract

 This paper is concerned with solving numerically the time fractional telegraph equations
having multiple space and time delays by proposing a novel matrix-collocation method
dependent on the Delannoy polynomial. This method enables easy and fast approximation
tool consisting of the matrix expansions of the functions using only the Delannoy
polynomial. Thus, the solutions are obtained directly from a unique matrix system. Also, the
residual error computation, which involves the same procedure as the method, provides the
improvement of the solutions. The method is evaluated under some valuable error tests in the
numerical applications. To do this, a unique computer module is devised. The present results
are compared with those of the existing methods in the literature, in order to oversee the
precision and efficiency of the method. One can express that the proposed method admits
very consistent approximation for the equations in question.

References

  • Caputo, M., \enquote{Elasticit$\grave{a}$e Dissipazione}, Bologna, Zanichelli, 1969.
  • Moaddy, K., Momani, S., Hashim, I., \enquote{The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics}, Comput. Math. Appl., 61, (2011), 1209--1216.
  • Hosseini, V.R., Chen, W., Avazzadeh, Z., \enquote{Numerical solution of fractional telegraph equation by using radial basis functions}, Eng. Anal. Bound. Elem., 38, (2014), 31--39.
  • Faraji, M, Ansari, O.R., \enquote{Linear and nonlinear vibrations of fractional viscoelastic Timoshenko nanobeams considering surface energy effects}, Appl. Math. Model., 43, (2017), 337--350.
  • Arqub, O.A., \enquote{Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm}, Int. J. Numer. Method H., 28(4), (2018), 828--856.
  • Koleva, M.N., Vulkov, L.G., \enquote{Numerical solution of time-fractional Black--Scholes equation}, Comp. Appl. Math., 36, (2017), 1699--1715.
  • Soori, Z., Aminataei, A., \enquote{A new approximation to Caputo-type fractional diffusion and advection equations on non-uniform meshes}, Appl. Numer. Math., 144, (2019), 21--41.
  • K\"{u}rk\c{c}\"{u}, \"{O}.K., Aslan, E., Sezer, M., \enquote{An advanced method with convergence analysis for solving space-time fractional partial differential equations with multi delays}, Eur. Phys. J. Plus, 134, (2019), 393.
  • Dehestani, H., Ordokhani, Y., Razzaghi, M., \enquote{A numerical technique for solving various kinds of fractional partial differential equations via Genocchi hybrid functions}, Rev. R. Acad. Cienc. Exactas, Fis. Nat. Madr., 113, (2019), 3297--3321.
  • Rihan, F.A., \enquote{Computational methods for delay parabolic and time-fractional partial differential equations}, Numer. Methods Partial Differ. Equ., 26, (2010), 1556--1571.
  • Usman, M., Hamid, M., Zubair, T., Haq, R.U., Wang, W., Liu, M.B., \enquote{Novel operational matrices-based method for solving fractional-order delay differential equations via shifted Gegenbauer polynomials}, Appl. Math. Comput., 372, (2020), 124985.
  • Pozar, D.M., \enquote{Microwave Engineering} in Addison-Wesley, 1990.
  • Mainardi, F., Paradisi, P., \enquote{Fractional diffusive waves}, J. Comput. Acoust., 9(4), (2001), 1417--1436.
  • Abdou, M.A., \enquote{Adomian decomposition method for solving the telegraph equation in charged particle transport}, J. Quant. Spectrosc. Radiat. Transf., 95, (2005), 407--414.
  • Orsingher, E., Beghin, L., \enquote{Time-fractional telegraph equations and telegraph processes with brownian time}, Probab. Theory Relat. Fields, 128, (2004), 141--160.
  • Kumar, A., Bhardwaj, A., Dubey, S., \enquote{A local meshless method to approximate the time-fractional telegraph equation}, Eng. Comput., (2020), https://doi.org/10.1007/s00366-020-01006-x.
  • Wang, Y.L., Du, M.-J., Temuer, C.-L., Tian, D., \enquote{Using reproducing kernel for solving a class of time-fractional telegraph equation with initial value conditions}, Int. J. Comput. Math., 95(8), (2018), 1609--1621.
  • Pandey, R.K., Mishra, H.K., \enquote{Numerical simulation for solution of space-time fractional telegraphs equations with local fractional derivatives via HAFSTM}, New Astronomy, 57, (2017), 82--93.
  • Y\"{u}zba\c{s}\i, \c{S}., Kara\c{c}ay\i r, M., \enquote{A Galerkin-type method to solve one-dimensional telegraph equation using collocation points in initial and boundary conditions}, Int. J. Comput. Methods, 15(1), (2018), 1850031, (16 pages).
  • Dehghan, M., Shokri, A., \enquote{A numerical method for solving the hyperbolic telegraph equation}, Numer. Methods Partial Differ. Equ., 24, (2008), 1080--1093.
  • Dehghan, M., Lakestani, M., \enquote{The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation}, Numer. Methods Partial Differ. Equ., 25, (2009), 931--938.
  • Pandit, S., Kumar, M., Tiwari, S., \enquote{Numerical simulation of second-order hyperbolic telegraph type equations with variable coefficients}, Comput. Phys. Commun., 187, (2015), 83--90.
  • Sharifi, S., Rashidinia, J., \enquote{Numerical solution of hyperbolic telegraph equation by cubic B-spline collocation method}, Appl. Math. Comput., 281, (2016), 28--38.
  • Delannoy, H., \enquote{Emploi de l'echiquier pour la resolution de certains problµemes de probabilites}, Assoc. Franc. Bordeaux, 24, (1895), 70--90.
  • Banderier, C., Schwer, S., \enquote{Why Delannoy numbers?}, J. Stat. Plan. Infer., 135(1), (2005), 40--54.
  • Weisstein, E.W., \enquote{Delannoy Number}, from MathWorld--A Wolfram Web Resource, https://mathworld.wolfram.com/DelannoyNumber.html.
  • Comtet, L., \enquote{Advanced Combinatorics: The Art of Finite and Infinite Expansions}, Rev. enl. ed. Dordrecht, Netherlands, Reidel, pp. 80-81, 1974.
  • Sulanke, R.A., \enquote{Objects counted by the central Delannoy numbers}, J. Integer Seq., 6, (2003), Article 03.1.5.
  • Peart, P., Woan, W.-J., \enquote{A bijective proof of the Delannoy recurrence}, Congressus Numerantium, 158, (2002), 29--33.
  • Hetyei, G., \enquote{Shifted Jacobi polynomials and Delannoy numbers}, (2009), ArXiv e-prints arXiv:0909.5512v2.
  • Sun, Z., \enquote{Congruences involving generalized central trinomial coefficients}, Sci. China Math., 57, (2014), 1375--1400.
  • Sun, Z.-W., \enquote{On Delannoy numbers and Schr\"{o}der numbers}, J. Number Theory, 131, (2011), 2387--2397.
  • Torres, A., Cabada, A., Nieto, J.J., \enquote{An exact formula for the number of alignments between two DNA sequences}, DNA Seq., 14, (2003), 227--430.
  • Guo, V.J.W., Zeng, J., \enquote{Proof of some conjectures of Z.-W. Sun on congruences for Apery polynomials}, J. Number Theory, 132, (2012), 1731--1740.
  • Abramowitz, M., Stegun, I.A., \enquote{Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables}, Nat. Bureau of Standards, Appl. Math. Series, 55, 1964.
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ömür Kıvanç Kürkçü 0000-0002-3987-7171

Publication Date April 30, 2021
Published in Issue Year 2021

Cite

APA Kürkçü, Ö. K. (2021). A novel numerical implementation for solving time fractional telegraph differential equations having multiple space and time delays via Delannoy polynomial. MANAS Journal of Engineering, 9(Special 1), 82-96. https://doi.org/10.51354/mjen.780716
AMA Kürkçü ÖK. A novel numerical implementation for solving time fractional telegraph differential equations having multiple space and time delays via Delannoy polynomial. MJEN. April 2021;9(Special 1):82-96. doi:10.51354/mjen.780716
Chicago Kürkçü, Ömür Kıvanç. “A Novel Numerical Implementation for Solving Time Fractional Telegraph Differential Equations Having Multiple Space and Time Delays via Delannoy Polynomial”. MANAS Journal of Engineering 9, no. Special 1 (April 2021): 82-96. https://doi.org/10.51354/mjen.780716.
EndNote Kürkçü ÖK (April 1, 2021) A novel numerical implementation for solving time fractional telegraph differential equations having multiple space and time delays via Delannoy polynomial. MANAS Journal of Engineering 9 Special 1 82–96.
IEEE Ö. K. Kürkçü, “A novel numerical implementation for solving time fractional telegraph differential equations having multiple space and time delays via Delannoy polynomial”, MJEN, vol. 9, no. Special 1, pp. 82–96, 2021, doi: 10.51354/mjen.780716.
ISNAD Kürkçü, Ömür Kıvanç. “A Novel Numerical Implementation for Solving Time Fractional Telegraph Differential Equations Having Multiple Space and Time Delays via Delannoy Polynomial”. MANAS Journal of Engineering 9/Special 1 (April 2021), 82-96. https://doi.org/10.51354/mjen.780716.
JAMA Kürkçü ÖK. A novel numerical implementation for solving time fractional telegraph differential equations having multiple space and time delays via Delannoy polynomial. MJEN. 2021;9:82–96.
MLA Kürkçü, Ömür Kıvanç. “A Novel Numerical Implementation for Solving Time Fractional Telegraph Differential Equations Having Multiple Space and Time Delays via Delannoy Polynomial”. MANAS Journal of Engineering, vol. 9, no. Special 1, 2021, pp. 82-96, doi:10.51354/mjen.780716.
Vancouver Kürkçü ÖK. A novel numerical implementation for solving time fractional telegraph differential equations having multiple space and time delays via Delannoy polynomial. MJEN. 2021;9(Special 1):82-96.

Manas Journal of Engineering 

16155