Year 2020,
, 90 - 98, 21.12.2020
Ömer Er
Ali Cavak
Adnan Aldemir
,
Hilal Demir Kıvrak
References
- [1] O.F. Er, A. Caglar, B. Ulas, H. Kivrak, A. Kivrak, Novel carbon nanotube supported Co@ Ag@ Pd formic acid electrooxidation catalysts prepared via sodium borohydride sequential reduction method, Materials Chemistry and Physics, 241 (2020) 122422.
- [2] M.W. Ellis, M.R. Von Spakovsky, D.J. Nelson, Fuel cell systems: efficient, flexible energy conversion for the 21st century, Proceedings of the IEEE, 89 (2001) 1808-1818.
- [3] D.Ş. Armeanu, Ş.C. Gherghina, G. Pasmangiu, Exploring the causal nexus between energy consumption, environmental pollution and economic growth: Empirical evidence from central and Eastern Europe, Energies, 12 (2019) 3704
- [4] B. Ulas, A. Caglar, O. Sahin, H. Kivrak, Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation, Journal of colloid and interface science, 532 (2018) 47-57.
- [5] H. Kivrak, D. Atbas, O. Alal, M.S. Çögenli, A. Bayrakceken, S.O. Mert, O. Sahin, A complementary study on novel PdAuCo catalysts: Synthesis, characterization, direct formic acid fuel cell application, and exergy analysis, International Journal of Hydrogen Energy, 43 (2018) 21886-21898.
- [6] O. Sahin, D. Duzenli, H. Kivrak, An ethanol electrooxidation study on carbon-supported Pt-Ru nanoparticles for direct ethanol fuel cells, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38 (2016) 628-634.
- [7] H.D. KIVRAK, The effect of temperature and concentration for methanol electrooxidation on Pt-Ru catalyst synthesized by microwave assisted route, Turkish Journal of Chemistry, 39 (2015) 563-575.
- [8] T.T.K. Huynh, T.Q.N. Tran, H.H. Yoon, W.-J. Kim, I.T. Kim, AgNi@ ZnO nanorods grown on graphene as an anodic catalyst for direct glucose fuel cells, Korean Journal of Chemical Engineering, 36 (2019) 1193-1200.
- [9] B. Ulas, A. Caglar, A. Kivrak, H. Kivrak, Atomic molar ratio optimization of carbon nanotube supported PdAuCo catalysts for ethylene glycol and methanol electrooxidation in alkaline media, Chemical Papers, 73 (2019) 425-434.
- [10] Y. Wang, Q. Wang, L.-y. Wan, Y. Han, Y. Hong, L. Huang, X. Yang, Y. Wang, K. Zaghib, Z. Zhou, KOH-doped polybenzimidazole membrane for direct hydrazine fuel cell, Journal of Colloid and Interface Science, 563 (2020) 27-32.
- [11] E. Granot, B. Filanovsky, I. Presman, I. Kuras, F. Patolsky, Hydrazine/air direct-liquid fuel cell based on nanostructured copper anodes, Journal of Power Sources, 204 (2012) 116-121.
- [12] K. Yamada, K. Asazawa, K. Yasuda, T. Ioroi, H. Tanaka, Y. Miyazaki, T. Kobayashi, Investigation of PEM type direct hydrazine fuel cell, Journal of power sources, 115 (2003) 236-242.
- [13] Q. Yi, H. Chu, M. Tang, Y. Zhang, X. Liu, Z. Zhou, H. Nie, A novel membraneless direct hydrazine/air fuel cell, Fuel cells, 14 (2014) 827-833.
- [14] T.Y. Burshtein, E.M. Farber, K. Ojha, D. Eisenberg, Revealing structure–activity links in hydrazine oxidation: doping and nanostructure in carbide–carbon electrocatalysts, Journal of Materials Chemistry A, 7 (2019) 23854-23861.
- [15] W.X. Yin, Z.P. Li, J.K. Zhu, H.Y. Qin, Effects of NaOH addition on performance of the direct hydrazine fuel cell, Journal of power sources, 182 (2008) 520-523.
- [16] R. Crisafulli, V.V.S. de Barros, F.E.R. de Oliveira, T. de Araújo Rocha, S. Zignani, L. Spadaro, A. Palella, J.A. Dias, J.J. Linares, On the promotional effect of Cu on Pt for hydrazine electrooxidation in alkaline medium, Applied Catalysis B: Environmental, 236 (2018) 36-44.
- [17] W. Wang, Y. Wang, S. Liu, M. Yahia, Y. Dong, Z. Lei, Carbon-supported phosphatized CuNi nanoparticle catalysts for hydrazine electrooxidation, International Journal of Hydrogen Energy, 44 (2019) 10637-10645.
- [18] B. Liang, Y. Wang, X. Liu, T. Tan, L. Zhang, W. Wang, Nickel–cobalt alloy doping phosphorus as advanced electrocatalyst for hydrazine oxidation, Journal of Alloys and Compounds, 807 (2019) 151648.
- [19] T. Wang, Q. Wang, Y. Wang, Y. Da, W. Zhou, Y. Shao, D. Li, S. Zhan, J. Yuan, H. Wang, Atomically Dispersed Semimetallic Selenium on Porous Carbon Membrane as an Electrode for Hydrazine Fuel Cells, Angewandte Chemie, 131 (2019) 13600-13605.
- [20] X. Liu, Y. Li, N. Chen, D. Deng, X. Xing, Y. Wang, Ni3S2@ Ni foam 3D electrode prepared via chemical corrosion by sodium sulfide and using in hydrazine electro-oxidation, Electrochimica Acta, 213 (2016) 730-739.
- [21] C. Li, M. Li, X. Bo, L. Yang, A.C. Mtukula, L. Guo, Facile synthesis of electrospinning Mn2O3-Fe2O3 loaded carbon fibers for electrocatalysis of hydrogen peroxide reduction and hydrazine oxidation, Electrochimica Acta, 211 (2016) 255-264.
- [22] S.J. Lao, H.Y. Qin, L.Q. Ye, B.H. Liu, Z.P. Li, A development of direct hydrazine/hydrogen peroxide fuel cell, Journal of Power Sources, 195 (2010) 4135-4138.
- [23] J.B. Raoof, R. Ojani, F. Jamali, S.R. Hosseini, Electrochemical detection of hydrazine using a copper oxide nanoparticle modified glassy carbon electrode, Caspian Journal of Chemistry, 1 (2012) 73-85.
- [24] X. Lin, H. Wen, D.-X. Zhang, G.-X. Cao, P. Wang, Highly dispersed nickel nitride nanoparticles on nickel nanosheets as an active catalyst for hydrazine electrooxidation, Journal of Materials Chemistry A, 8 (2020) 632-638.
- [25] A. Zabielaitė, A. Balčiūnaitė, D. Šimkūnaitė, S. Lichušina, I. Stalnionienė, B. Šimkūnaitė-Stanynienė, L. Naruškevičius, L. Tamašauskaitė-Tamašiūnaitė, E. Norkus, A. Selskis, High Performance Direct N2H4-H2O2 Fuel Cell Using Fiber-Shaped Co Decorated with Pt Crystallites as Anode Electrocatalysts, Journal of The Electrochemical Society, 167 (2020) 054502.
- [26] H. Wen, G.-X. Cao, M.-H. Chen, Y.-P. Qiu, L.-Y. Gan, P. Wang, Surface phosphorization of hierarchically nanostructured nickel molybdenum oxide derived electrocatalyst for direct hydrazine fuel cell, Applied Catalysis B: Environmental, 268 (2020) 118388.
- [27] Y. Lei, Y. Liu, B. Fan, L. Mao, D. Yu, Y. Huang, F. Guo, Facile fabrication of hierarchically porous Ni foam@ Ag-Ni catalyst for efficient hydrazine oxidation in alkaline medium, Journal of the Taiwan Institute of Chemical Engineers, 105 (2019) 75-84.
- [28] G.-W. Yang, G.-Y. Gao, C. Wang, C.-L. Xu, H.-L. Li, Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation, Carbon, 46 (2008) 747-752.
- [29] H. Gao, Y. Wang, F. Xiao, C.B. Ching, H. Duan, Growth of copper nanocubes on graphene paper as free-standing electrodes for direct hydrazine fuel cells, The Journal of Physical Chemistry C, 116 (2012) 7719-7725.
- [30] T. Asset, A. Roy, T. Sakamoto, M. Padilla, I. Matanovic, K. Artyushkova, A. Serov, F. Maillard, M. Chatenet, K. Asazawa, Highly active and selective nickel molybdenum catalysts for direct hydrazine fuel cell, Electrochimica Acta, 215 (2016) 420-426.
- [31] W. Liu, J. Xie, Y. Guo, S. Lou, L. Gao, B. Tang, Sulfurization-induced edge amorphization in copper–nickel–cobalt layered double hydroxide nanosheets promoting hydrazine electro-oxidation, Journal of Materials Chemistry A, 7 (2019) 24437-24444.
- [32] L.-X. Chen, L.-Y. Jiang, A.-J. Wang, Q.-Y. Chen, J.-J. Feng, Simple synthesis of bimetallic AuPd dendritic alloyed nanocrystals with enhanced electrocatalytic performance for hydrazine oxidation reaction, Electrochimica Acta, 190 (2016) 872-878.
- [33] A. Zhao, H. Sun, L. Chen, Y. Huang, X. Lu, Development of highly efficient and scalable free-standing electrodes for the fabrication of hydrazine-O2 fuel cell, Materials Research Express, 6 (2019) 085533.
- [34] K. Akbar, J.H. Kim, Z. Lee, M. Kim, Y. Yi, S.-H. Chun, Superaerophobic graphene nano-hills for direct hydrazine fuel cells, NPG Asia Materials, 9 (2017) e378-e378.
- [35] X. Yan, F. Meng, Y. Xie, J. Liu, Y. Ding, Direct N 2 H 4/H 2 O 2 fuel cells powered by nanoporous gold leaves, Scientific reports, 2 (2012) 941.
- [36] J. Ding, P. Kannan, P. Wang, S. Ji, H. Wang, Q. Liu, H. Gai, F. Liu, R. Wang, Synthesis of nitrogen-doped MnO/carbon network as an advanced catalyst for direct hydrazine fuel cells, Journal of Power Sources, 413 (2019) 209-215.
- [37] K.A. Wepasnick, B.A. Smith, J.L. Bitter, D.H. Fairbrother, Chemical and structural characterization of carbon nanotube surfaces, Analytical and bioanalytical chemistry, 396 (2010) 1003-1014.
- [38] B. Qi, L. Di, W. Xu, X. Zhang, Dry plasma reduction to prepare a high performance Pd/C catalyst at atmospheric pressure for CO oxidation, Journal of Materials Chemistry A, 2 (2014) 11885-11890.
- [39] A. Caglar, H. Kivrak, Highly active carbon nanotube supported PdAu alloy catalysts for ethanol electrooxidation in alkaline environment, International Journal of Hydrogen Energy, 44 (2019) 11734-11743.
- [40] A. Eshghi, Graphene/Ni–Fe layered double hydroxide nano composites as advanced electrode materials for glucose electro oxidation, International Journal of Hydrogen Energy, 42 (2017) 15064-15072.
- [41] W. Qu, Z. Wang, X. Sui, D. Gu, An efficient antimony doped tin oxide and carbon nanotubes hybrid support of Pd catalyst for formic acid electrooxidation, international journal of hydrogen energy, 39 (2014) 5678-5688.
Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts
Year 2020,
, 90 - 98, 21.12.2020
Ömer Er
Ali Cavak
Adnan Aldemir
,
Hilal Demir Kıvrak
Abstract
In this study, carbon nanotube (CNT) supported Pd catalysts at varying Pd molar ratios are prepared via NaBH4 reduction method. Catalysts prepared for hydrazine electrooxidation are characterized via N2 adsorption-desorption measurements (BET), X-ray photoelectron spectroscopy (XPS), and transmission electron microscope (TEM). Electrochemical measurements are performed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques by CHI660E potentiostat in a three-electrode system. According to the characterization results, Pd/CNT catalysts are successfully synthesized. For 5% Pd/CNT catalyst, the average particle size and the surface area determined as 5.17 nm and 773.10 m2 g-1 via TEM and BET, respectively. Between the Pd containing (0.1-20 wt %) CNT supported catalysts prepared, 5% Pd / CNT catalyst shows the best current density as 6.81 mA cm-2 (1122.63 mA mg-1 Pd). Furthermore, 5% Pd/CNT catalyst shows littlest charge transfer resistance (Rct) compared to Pd/CNT catalysts.
References
- [1] O.F. Er, A. Caglar, B. Ulas, H. Kivrak, A. Kivrak, Novel carbon nanotube supported Co@ Ag@ Pd formic acid electrooxidation catalysts prepared via sodium borohydride sequential reduction method, Materials Chemistry and Physics, 241 (2020) 122422.
- [2] M.W. Ellis, M.R. Von Spakovsky, D.J. Nelson, Fuel cell systems: efficient, flexible energy conversion for the 21st century, Proceedings of the IEEE, 89 (2001) 1808-1818.
- [3] D.Ş. Armeanu, Ş.C. Gherghina, G. Pasmangiu, Exploring the causal nexus between energy consumption, environmental pollution and economic growth: Empirical evidence from central and Eastern Europe, Energies, 12 (2019) 3704
- [4] B. Ulas, A. Caglar, O. Sahin, H. Kivrak, Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation, Journal of colloid and interface science, 532 (2018) 47-57.
- [5] H. Kivrak, D. Atbas, O. Alal, M.S. Çögenli, A. Bayrakceken, S.O. Mert, O. Sahin, A complementary study on novel PdAuCo catalysts: Synthesis, characterization, direct formic acid fuel cell application, and exergy analysis, International Journal of Hydrogen Energy, 43 (2018) 21886-21898.
- [6] O. Sahin, D. Duzenli, H. Kivrak, An ethanol electrooxidation study on carbon-supported Pt-Ru nanoparticles for direct ethanol fuel cells, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38 (2016) 628-634.
- [7] H.D. KIVRAK, The effect of temperature and concentration for methanol electrooxidation on Pt-Ru catalyst synthesized by microwave assisted route, Turkish Journal of Chemistry, 39 (2015) 563-575.
- [8] T.T.K. Huynh, T.Q.N. Tran, H.H. Yoon, W.-J. Kim, I.T. Kim, AgNi@ ZnO nanorods grown on graphene as an anodic catalyst for direct glucose fuel cells, Korean Journal of Chemical Engineering, 36 (2019) 1193-1200.
- [9] B. Ulas, A. Caglar, A. Kivrak, H. Kivrak, Atomic molar ratio optimization of carbon nanotube supported PdAuCo catalysts for ethylene glycol and methanol electrooxidation in alkaline media, Chemical Papers, 73 (2019) 425-434.
- [10] Y. Wang, Q. Wang, L.-y. Wan, Y. Han, Y. Hong, L. Huang, X. Yang, Y. Wang, K. Zaghib, Z. Zhou, KOH-doped polybenzimidazole membrane for direct hydrazine fuel cell, Journal of Colloid and Interface Science, 563 (2020) 27-32.
- [11] E. Granot, B. Filanovsky, I. Presman, I. Kuras, F. Patolsky, Hydrazine/air direct-liquid fuel cell based on nanostructured copper anodes, Journal of Power Sources, 204 (2012) 116-121.
- [12] K. Yamada, K. Asazawa, K. Yasuda, T. Ioroi, H. Tanaka, Y. Miyazaki, T. Kobayashi, Investigation of PEM type direct hydrazine fuel cell, Journal of power sources, 115 (2003) 236-242.
- [13] Q. Yi, H. Chu, M. Tang, Y. Zhang, X. Liu, Z. Zhou, H. Nie, A novel membraneless direct hydrazine/air fuel cell, Fuel cells, 14 (2014) 827-833.
- [14] T.Y. Burshtein, E.M. Farber, K. Ojha, D. Eisenberg, Revealing structure–activity links in hydrazine oxidation: doping and nanostructure in carbide–carbon electrocatalysts, Journal of Materials Chemistry A, 7 (2019) 23854-23861.
- [15] W.X. Yin, Z.P. Li, J.K. Zhu, H.Y. Qin, Effects of NaOH addition on performance of the direct hydrazine fuel cell, Journal of power sources, 182 (2008) 520-523.
- [16] R. Crisafulli, V.V.S. de Barros, F.E.R. de Oliveira, T. de Araújo Rocha, S. Zignani, L. Spadaro, A. Palella, J.A. Dias, J.J. Linares, On the promotional effect of Cu on Pt for hydrazine electrooxidation in alkaline medium, Applied Catalysis B: Environmental, 236 (2018) 36-44.
- [17] W. Wang, Y. Wang, S. Liu, M. Yahia, Y. Dong, Z. Lei, Carbon-supported phosphatized CuNi nanoparticle catalysts for hydrazine electrooxidation, International Journal of Hydrogen Energy, 44 (2019) 10637-10645.
- [18] B. Liang, Y. Wang, X. Liu, T. Tan, L. Zhang, W. Wang, Nickel–cobalt alloy doping phosphorus as advanced electrocatalyst for hydrazine oxidation, Journal of Alloys and Compounds, 807 (2019) 151648.
- [19] T. Wang, Q. Wang, Y. Wang, Y. Da, W. Zhou, Y. Shao, D. Li, S. Zhan, J. Yuan, H. Wang, Atomically Dispersed Semimetallic Selenium on Porous Carbon Membrane as an Electrode for Hydrazine Fuel Cells, Angewandte Chemie, 131 (2019) 13600-13605.
- [20] X. Liu, Y. Li, N. Chen, D. Deng, X. Xing, Y. Wang, Ni3S2@ Ni foam 3D electrode prepared via chemical corrosion by sodium sulfide and using in hydrazine electro-oxidation, Electrochimica Acta, 213 (2016) 730-739.
- [21] C. Li, M. Li, X. Bo, L. Yang, A.C. Mtukula, L. Guo, Facile synthesis of electrospinning Mn2O3-Fe2O3 loaded carbon fibers for electrocatalysis of hydrogen peroxide reduction and hydrazine oxidation, Electrochimica Acta, 211 (2016) 255-264.
- [22] S.J. Lao, H.Y. Qin, L.Q. Ye, B.H. Liu, Z.P. Li, A development of direct hydrazine/hydrogen peroxide fuel cell, Journal of Power Sources, 195 (2010) 4135-4138.
- [23] J.B. Raoof, R. Ojani, F. Jamali, S.R. Hosseini, Electrochemical detection of hydrazine using a copper oxide nanoparticle modified glassy carbon electrode, Caspian Journal of Chemistry, 1 (2012) 73-85.
- [24] X. Lin, H. Wen, D.-X. Zhang, G.-X. Cao, P. Wang, Highly dispersed nickel nitride nanoparticles on nickel nanosheets as an active catalyst for hydrazine electrooxidation, Journal of Materials Chemistry A, 8 (2020) 632-638.
- [25] A. Zabielaitė, A. Balčiūnaitė, D. Šimkūnaitė, S. Lichušina, I. Stalnionienė, B. Šimkūnaitė-Stanynienė, L. Naruškevičius, L. Tamašauskaitė-Tamašiūnaitė, E. Norkus, A. Selskis, High Performance Direct N2H4-H2O2 Fuel Cell Using Fiber-Shaped Co Decorated with Pt Crystallites as Anode Electrocatalysts, Journal of The Electrochemical Society, 167 (2020) 054502.
- [26] H. Wen, G.-X. Cao, M.-H. Chen, Y.-P. Qiu, L.-Y. Gan, P. Wang, Surface phosphorization of hierarchically nanostructured nickel molybdenum oxide derived electrocatalyst for direct hydrazine fuel cell, Applied Catalysis B: Environmental, 268 (2020) 118388.
- [27] Y. Lei, Y. Liu, B. Fan, L. Mao, D. Yu, Y. Huang, F. Guo, Facile fabrication of hierarchically porous Ni foam@ Ag-Ni catalyst for efficient hydrazine oxidation in alkaline medium, Journal of the Taiwan Institute of Chemical Engineers, 105 (2019) 75-84.
- [28] G.-W. Yang, G.-Y. Gao, C. Wang, C.-L. Xu, H.-L. Li, Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation, Carbon, 46 (2008) 747-752.
- [29] H. Gao, Y. Wang, F. Xiao, C.B. Ching, H. Duan, Growth of copper nanocubes on graphene paper as free-standing electrodes for direct hydrazine fuel cells, The Journal of Physical Chemistry C, 116 (2012) 7719-7725.
- [30] T. Asset, A. Roy, T. Sakamoto, M. Padilla, I. Matanovic, K. Artyushkova, A. Serov, F. Maillard, M. Chatenet, K. Asazawa, Highly active and selective nickel molybdenum catalysts for direct hydrazine fuel cell, Electrochimica Acta, 215 (2016) 420-426.
- [31] W. Liu, J. Xie, Y. Guo, S. Lou, L. Gao, B. Tang, Sulfurization-induced edge amorphization in copper–nickel–cobalt layered double hydroxide nanosheets promoting hydrazine electro-oxidation, Journal of Materials Chemistry A, 7 (2019) 24437-24444.
- [32] L.-X. Chen, L.-Y. Jiang, A.-J. Wang, Q.-Y. Chen, J.-J. Feng, Simple synthesis of bimetallic AuPd dendritic alloyed nanocrystals with enhanced electrocatalytic performance for hydrazine oxidation reaction, Electrochimica Acta, 190 (2016) 872-878.
- [33] A. Zhao, H. Sun, L. Chen, Y. Huang, X. Lu, Development of highly efficient and scalable free-standing electrodes for the fabrication of hydrazine-O2 fuel cell, Materials Research Express, 6 (2019) 085533.
- [34] K. Akbar, J.H. Kim, Z. Lee, M. Kim, Y. Yi, S.-H. Chun, Superaerophobic graphene nano-hills for direct hydrazine fuel cells, NPG Asia Materials, 9 (2017) e378-e378.
- [35] X. Yan, F. Meng, Y. Xie, J. Liu, Y. Ding, Direct N 2 H 4/H 2 O 2 fuel cells powered by nanoporous gold leaves, Scientific reports, 2 (2012) 941.
- [36] J. Ding, P. Kannan, P. Wang, S. Ji, H. Wang, Q. Liu, H. Gai, F. Liu, R. Wang, Synthesis of nitrogen-doped MnO/carbon network as an advanced catalyst for direct hydrazine fuel cells, Journal of Power Sources, 413 (2019) 209-215.
- [37] K.A. Wepasnick, B.A. Smith, J.L. Bitter, D.H. Fairbrother, Chemical and structural characterization of carbon nanotube surfaces, Analytical and bioanalytical chemistry, 396 (2010) 1003-1014.
- [38] B. Qi, L. Di, W. Xu, X. Zhang, Dry plasma reduction to prepare a high performance Pd/C catalyst at atmospheric pressure for CO oxidation, Journal of Materials Chemistry A, 2 (2014) 11885-11890.
- [39] A. Caglar, H. Kivrak, Highly active carbon nanotube supported PdAu alloy catalysts for ethanol electrooxidation in alkaline environment, International Journal of Hydrogen Energy, 44 (2019) 11734-11743.
- [40] A. Eshghi, Graphene/Ni–Fe layered double hydroxide nano composites as advanced electrode materials for glucose electro oxidation, International Journal of Hydrogen Energy, 42 (2017) 15064-15072.
- [41] W. Qu, Z. Wang, X. Sui, D. Gu, An efficient antimony doped tin oxide and carbon nanotubes hybrid support of Pd catalyst for formic acid electrooxidation, international journal of hydrogen energy, 39 (2014) 5678-5688.