Research Article
BibTex RIS Cite

Ferrocene as a leaving group; Unexpected rearrangement reactions for the synthesis of 2,3-diarylnapthoquinones

Year 2020, Volume: 8 Issue: 1, 22 - 27, 30.06.2020

Abstract

In general, Suzuki-Miyaura coupling reaction between aryl bromide and arylboronic acids form the new C-C bond in the presence of Pd-catalyst. In the present study, 2-bromo-3-ferrocenyl-1,4-naphthoquinone 2 intermediate is synthesized by starting from 2,3-dibromo-1,4-naphthoquinone via Suzuki-Miyaura Coupling reaction. Then, it is investigated that the reaction between 2 and arylboronic acids give a new rearrangement reaction involving free radicals. Ferrocene structure displays critical roles for the formation of 2,3-diaryl-1,4-naphthoquinones. This reaction could be first example for the radical C-C bond cleavage reactions including ferrocene.

Supporting Institution

TUBITAK

Project Number

114Z042

Thanks

We want to express our thanks to the Scientific and Technical Research Council of Turkey (TUBİTAK-114Z042) for financial supports of Microwave Reactor and Van Yüzüncü Yil University (FBA-2019-7910) for financial supports of chemicals. N. A. also thanks to YÖK 100/2000 for scholarships.

References

  • [1] R. B. Semwal, D. K. Semwal, S. Combrinck, C. Cartwright-Jones, A. Viljoen, Journal of Ethnopharmacology 2014, 155, 80-103; L. Zhou, X. Zhang, W. Zhou, Chemistry Central Journal 2017, 11; A. Denis, P. Palvadeau, P. Molinie, O. Chauvet, K. Boubekeur, Solid State Sciences 2001, 3, 715-725.
  • [2] R. A. Sharma, B. Singh, D. Singh, P. Chandrawat, Journal of Medicinal Plants Research 2009, 3, 1153-1175; B. B. Carbas, A. Kivrak, M. Zora, A. M. Onal, Reactive & Functional Polymers 2011, 71, 579-587; R. M. Cory, D. M. McKnight, Environmental Science & Technology 2005, 39, 8142-8149.
  • [3] B. N. Poul, J. R. Vakil, Asian Journal of Chemistry 1998, 10, 639-640.
  • [4] G. Abbas, Z. Hassan, A. Al-Harrasi, A. Khan, A. Al-Adawi, M. Ali, Journal of Molecular Structure 2019, 1195, 462-469.
  • [5] I. Kim, G. Chhetri, J. Kim, T. Seo, Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 2019, 112, 1731-1738.
  • [6] G. A. M. Jardim, E. H. G. da Cruz, W. O. Valenca, D. J. B. Lima, B. C. Cavalcanti, C. Pessoa, J. Rafique, A. L. Braga, C. Jacob, E. N. da Silva, Molecules 2018, 23.
  • [7] M. Michalik, P. Poliak, V. Lukes, E. Klein, Phytochemistry 2019, 166.
  • [8] M. M. Zangeneh, A. Zangeneh, Applied Organometallic Chemistry.
  • [9] N. Yu, X. Li, M. Wen, P. Geng, X. L. Ren, Z. J. Wang, Z. G. Chen, Journal of Nanoscience and Nanotechnology 2020, 20, 2032-2039.
  • [10] O. Moaven, K. I. Votanopoulos, P. Shen, P. Mansfield, D. L. Bartlett, G. Russell, R. McQuellon, J. H. Stewart, E. A. Levine, Annals of Surgical Oncology.
  • [11] T. Ishikawa, Pharmacogenomics 2012, 13, 633-636.
  • [12] W. Y. Huang, Y. Z. Cai, Y. B. Zhang, Nutrition and Cancer-an International Journal 2010, 62, 1-20; L. F. Tietze, H. P. Bell, S. Chandrasekhar, Angewandte Chemie-International Edition 2003, 42, 3996-4028.
  • [13] G. D. Fang, J. Gao, D. D. Dionysiou, C. Liu, D. M. Zhou, Environmental Science & Technology 2013, 47, 4605-4611.
  • [14] M. Zora, A. Kivrak, Y. Kelgokmen, Journal of Organometallic Chemistry 2014, 759, 67-73.
  • [15] M. M. Santos, P. Bastos, I. Catela, K. Zalewska, L. C. Branco, Mini-Reviews in Medicinal Chemistry 2017, 17, 771-784.
  • [16] A. Kivrak, C. Zobi, Y. Torlak, Y. Camlisoy, M. Kus, H. Kivrak, Applied Organometallic Chemistry 2018, 32. N. Aslan-Ertas, E. Kavak, F. Salma, H. Celik-Kazici, H. Kivrak, A. Kivrak, Electroanalysis 2020, just accepted.
  • [17] X. Y. Wang, Q. Li, J. J. Xu, S. Wu, T. F. Xiao, J. Hao, P. Yu, L. Q. Mao, Analytical Chemistry 2016, 88, 5885-5891.
  • [18] L. Guyon, E. Lepeltier, J. C. Gimel, B. Calvignac, F. Franconi, N. Lautram, A. Dupont, C. Bourgaux, P. Pigeon, P. Saulnier, G. Jaouen, C. Passirani, Journal of Physical Chemistry Letters 2019, 10, 6613-6620.
  • [19] A. Kivrak, M. Zora, Journal of Organometallic Chemistry 2007, 692, 2346-2349; M. Zora, A. Kivrak, C. Yazici, Journal of Organic Chemistry 2011, 76, 6726-6742.
  • [20] B. Yucel, B. Sanli, H. Soylemez, I. Yilmaz, Tetrahedron 2011, 67, 1406-1421.
  • [21] B. B. Carbas, A. Kivrak, E. Kayak, Materials Chemistry and Physics 2017, 188, 68-74.
  • [22] O. Sahin, H. Kivrak, A. Kivrak, H. C. Kazici, O. Alal, D. Atbas, International Journal of Electrochemical Science 2017, 12, 762-769; M. Guler, V. Turkoglu, A. Kivrak, F. Karahan, Materials Science & Engineering C-Materials for Biological Applications 2018, 90, 454-460.
  • [23] Z. Hassan, I. Ullah, I. Ali, R. A. Khera, I. Knepper, A. Ali, T. Patonay, A. Villinger, P. Langer, Tetrahedron 2013, 69, 460-469.
  • [24] C. H. Cho, D. I. Jung, B. Neuenswander, R. C. Larock, Acs Combinatorial Science 2011, 13, 501-510.
  • [25] S. Kotha, A. K. Ghosh, Synlett 2002, 451-452; M. A. S. Algso, A. Kivrak, Chemical Papers 2019, 73, 977-985.
  • [26] S. Yoshida, H. Kubo, T. Saika, S. Katsumura, Chemistry Letters 1996, 139-140.
  • [27] W. M. Best, C. G. Sims, M. Winslade, Australian Journal of Chemistry 2001, 54, 401-404.
  • [28] M. W. Davies, C. N. Johnson, J. P. A. Harrity, Journal of Organic Chemistry 2001, 66, 3525-3532.
  • [29] R. P. Hsung, Y. C. Xu, W. D. Wulff, Tetrahedron Letters 1995, 36, 8159-8162.
  • [30] P. Patil, A. Nimonkar, K. G. Akamanchi, Journal of Organic Chemistry 2014, 79, 2331-2336.
  • [31] Y. Fujiwara, V. Domingo, I. B. Seiple, R. Gianatassio, M. Del Bel, P. S. Baran, Journal of the American Chemical Society 2011, 133, 3292-3295.
  • [32] J. Wang, S. Wang, G. Wang, J. Zhang, X. Q. Yu, Chemical Communications 2012, 48, 11769-11771.
  • [33] K. Komeyama, T. Kashihara, K. Takaki, Tetrahedron Letters 2013, 54, 1084-1086.
  • [34] Y. J. Wang, S. Zhu, L. H. Zou, European Journal of Organic Chemistry 2019, 2019, 2179-2201; P. P. Singh, S. K. Aithagani, M. Yadav, V. P. Singh, R. A. Vishwakarma, Journal of Organic Chemistry 2013, 78, 2639-2648; P. Ashok, A. Ilangovan, Tetrahedron Letters 2018, 59, 438-441.
  • [35] A. Ilangovan, A. Polu, G. Satish, Organic Chemistry Frontiers 2015, 2, 1616-1620.
Year 2020, Volume: 8 Issue: 1, 22 - 27, 30.06.2020

Abstract

Project Number

114Z042

References

  • [1] R. B. Semwal, D. K. Semwal, S. Combrinck, C. Cartwright-Jones, A. Viljoen, Journal of Ethnopharmacology 2014, 155, 80-103; L. Zhou, X. Zhang, W. Zhou, Chemistry Central Journal 2017, 11; A. Denis, P. Palvadeau, P. Molinie, O. Chauvet, K. Boubekeur, Solid State Sciences 2001, 3, 715-725.
  • [2] R. A. Sharma, B. Singh, D. Singh, P. Chandrawat, Journal of Medicinal Plants Research 2009, 3, 1153-1175; B. B. Carbas, A. Kivrak, M. Zora, A. M. Onal, Reactive & Functional Polymers 2011, 71, 579-587; R. M. Cory, D. M. McKnight, Environmental Science & Technology 2005, 39, 8142-8149.
  • [3] B. N. Poul, J. R. Vakil, Asian Journal of Chemistry 1998, 10, 639-640.
  • [4] G. Abbas, Z. Hassan, A. Al-Harrasi, A. Khan, A. Al-Adawi, M. Ali, Journal of Molecular Structure 2019, 1195, 462-469.
  • [5] I. Kim, G. Chhetri, J. Kim, T. Seo, Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 2019, 112, 1731-1738.
  • [6] G. A. M. Jardim, E. H. G. da Cruz, W. O. Valenca, D. J. B. Lima, B. C. Cavalcanti, C. Pessoa, J. Rafique, A. L. Braga, C. Jacob, E. N. da Silva, Molecules 2018, 23.
  • [7] M. Michalik, P. Poliak, V. Lukes, E. Klein, Phytochemistry 2019, 166.
  • [8] M. M. Zangeneh, A. Zangeneh, Applied Organometallic Chemistry.
  • [9] N. Yu, X. Li, M. Wen, P. Geng, X. L. Ren, Z. J. Wang, Z. G. Chen, Journal of Nanoscience and Nanotechnology 2020, 20, 2032-2039.
  • [10] O. Moaven, K. I. Votanopoulos, P. Shen, P. Mansfield, D. L. Bartlett, G. Russell, R. McQuellon, J. H. Stewart, E. A. Levine, Annals of Surgical Oncology.
  • [11] T. Ishikawa, Pharmacogenomics 2012, 13, 633-636.
  • [12] W. Y. Huang, Y. Z. Cai, Y. B. Zhang, Nutrition and Cancer-an International Journal 2010, 62, 1-20; L. F. Tietze, H. P. Bell, S. Chandrasekhar, Angewandte Chemie-International Edition 2003, 42, 3996-4028.
  • [13] G. D. Fang, J. Gao, D. D. Dionysiou, C. Liu, D. M. Zhou, Environmental Science & Technology 2013, 47, 4605-4611.
  • [14] M. Zora, A. Kivrak, Y. Kelgokmen, Journal of Organometallic Chemistry 2014, 759, 67-73.
  • [15] M. M. Santos, P. Bastos, I. Catela, K. Zalewska, L. C. Branco, Mini-Reviews in Medicinal Chemistry 2017, 17, 771-784.
  • [16] A. Kivrak, C. Zobi, Y. Torlak, Y. Camlisoy, M. Kus, H. Kivrak, Applied Organometallic Chemistry 2018, 32. N. Aslan-Ertas, E. Kavak, F. Salma, H. Celik-Kazici, H. Kivrak, A. Kivrak, Electroanalysis 2020, just accepted.
  • [17] X. Y. Wang, Q. Li, J. J. Xu, S. Wu, T. F. Xiao, J. Hao, P. Yu, L. Q. Mao, Analytical Chemistry 2016, 88, 5885-5891.
  • [18] L. Guyon, E. Lepeltier, J. C. Gimel, B. Calvignac, F. Franconi, N. Lautram, A. Dupont, C. Bourgaux, P. Pigeon, P. Saulnier, G. Jaouen, C. Passirani, Journal of Physical Chemistry Letters 2019, 10, 6613-6620.
  • [19] A. Kivrak, M. Zora, Journal of Organometallic Chemistry 2007, 692, 2346-2349; M. Zora, A. Kivrak, C. Yazici, Journal of Organic Chemistry 2011, 76, 6726-6742.
  • [20] B. Yucel, B. Sanli, H. Soylemez, I. Yilmaz, Tetrahedron 2011, 67, 1406-1421.
  • [21] B. B. Carbas, A. Kivrak, E. Kayak, Materials Chemistry and Physics 2017, 188, 68-74.
  • [22] O. Sahin, H. Kivrak, A. Kivrak, H. C. Kazici, O. Alal, D. Atbas, International Journal of Electrochemical Science 2017, 12, 762-769; M. Guler, V. Turkoglu, A. Kivrak, F. Karahan, Materials Science & Engineering C-Materials for Biological Applications 2018, 90, 454-460.
  • [23] Z. Hassan, I. Ullah, I. Ali, R. A. Khera, I. Knepper, A. Ali, T. Patonay, A. Villinger, P. Langer, Tetrahedron 2013, 69, 460-469.
  • [24] C. H. Cho, D. I. Jung, B. Neuenswander, R. C. Larock, Acs Combinatorial Science 2011, 13, 501-510.
  • [25] S. Kotha, A. K. Ghosh, Synlett 2002, 451-452; M. A. S. Algso, A. Kivrak, Chemical Papers 2019, 73, 977-985.
  • [26] S. Yoshida, H. Kubo, T. Saika, S. Katsumura, Chemistry Letters 1996, 139-140.
  • [27] W. M. Best, C. G. Sims, M. Winslade, Australian Journal of Chemistry 2001, 54, 401-404.
  • [28] M. W. Davies, C. N. Johnson, J. P. A. Harrity, Journal of Organic Chemistry 2001, 66, 3525-3532.
  • [29] R. P. Hsung, Y. C. Xu, W. D. Wulff, Tetrahedron Letters 1995, 36, 8159-8162.
  • [30] P. Patil, A. Nimonkar, K. G. Akamanchi, Journal of Organic Chemistry 2014, 79, 2331-2336.
  • [31] Y. Fujiwara, V. Domingo, I. B. Seiple, R. Gianatassio, M. Del Bel, P. S. Baran, Journal of the American Chemical Society 2011, 133, 3292-3295.
  • [32] J. Wang, S. Wang, G. Wang, J. Zhang, X. Q. Yu, Chemical Communications 2012, 48, 11769-11771.
  • [33] K. Komeyama, T. Kashihara, K. Takaki, Tetrahedron Letters 2013, 54, 1084-1086.
  • [34] Y. J. Wang, S. Zhu, L. H. Zou, European Journal of Organic Chemistry 2019, 2019, 2179-2201; P. P. Singh, S. K. Aithagani, M. Yadav, V. P. Singh, R. A. Vishwakarma, Journal of Organic Chemistry 2013, 78, 2639-2648; P. Ashok, A. Ilangovan, Tetrahedron Letters 2018, 59, 438-441.
  • [35] A. Ilangovan, A. Polu, G. Satish, Organic Chemistry Frontiers 2015, 2, 1616-1620.
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Nevroz Aslan Ertaş 0000-0003-3590-5961

Arif Kıvrak 0000-0003-4770-2686

Project Number 114Z042
Publication Date June 30, 2020
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Aslan Ertaş, N., & Kıvrak, A. (2020). Ferrocene as a leaving group; Unexpected rearrangement reactions for the synthesis of 2,3-diarylnapthoquinones. MANAS Journal of Engineering, 8(1), 22-27.
AMA Aslan Ertaş N, Kıvrak A. Ferrocene as a leaving group; Unexpected rearrangement reactions for the synthesis of 2,3-diarylnapthoquinones. MJEN. June 2020;8(1):22-27.
Chicago Aslan Ertaş, Nevroz, and Arif Kıvrak. “Ferrocene As a Leaving Group; Unexpected Rearrangement Reactions for the Synthesis of 2,3-Diarylnapthoquinones”. MANAS Journal of Engineering 8, no. 1 (June 2020): 22-27.
EndNote Aslan Ertaş N, Kıvrak A (June 1, 2020) Ferrocene as a leaving group; Unexpected rearrangement reactions for the synthesis of 2,3-diarylnapthoquinones. MANAS Journal of Engineering 8 1 22–27.
IEEE N. Aslan Ertaş and A. Kıvrak, “Ferrocene as a leaving group; Unexpected rearrangement reactions for the synthesis of 2,3-diarylnapthoquinones”, MJEN, vol. 8, no. 1, pp. 22–27, 2020.
ISNAD Aslan Ertaş, Nevroz - Kıvrak, Arif. “Ferrocene As a Leaving Group; Unexpected Rearrangement Reactions for the Synthesis of 2,3-Diarylnapthoquinones”. MANAS Journal of Engineering 8/1 (June 2020), 22-27.
JAMA Aslan Ertaş N, Kıvrak A. Ferrocene as a leaving group; Unexpected rearrangement reactions for the synthesis of 2,3-diarylnapthoquinones. MJEN. 2020;8:22–27.
MLA Aslan Ertaş, Nevroz and Arif Kıvrak. “Ferrocene As a Leaving Group; Unexpected Rearrangement Reactions for the Synthesis of 2,3-Diarylnapthoquinones”. MANAS Journal of Engineering, vol. 8, no. 1, 2020, pp. 22-27.
Vancouver Aslan Ertaş N, Kıvrak A. Ferrocene as a leaving group; Unexpected rearrangement reactions for the synthesis of 2,3-diarylnapthoquinones. MJEN. 2020;8(1):22-7.

Manas Journal of Engineering 

16155