Year 2020, Volume 8 , Issue 2, Pages 138 - 143 2020-12-21

Investigation of Engineering Properties of Blast Furnace Slag Additive Mortars

Hüseyin BORAN [1] , Osman GÜNAYDIN [2] , Kadir GÜÇLÜER [3]


Cement, water and fine aggregate mixture is called mortar. Mortar samples suitable for the desired purpose can be obtained by adding various additives to the mortar samples. In this study, instead of standard sand, blast furnace slag (BFS) was used at 10%, 20% and 30% by weight in mortar samples. In order to determine the mechanical properties of the samples, compressive and flexural strength tests were applied. For the electrical resistivity values, a device with constant 30V voltage was prepared and the electrical resistivity values were measured. To determine the freeze-thaw resisting properties, it was applied sodium sulfate experiment. As a result, it was seen that the best values were obtained from 30% BFS additive samples in all series. The highest resistivity values are in the sample with 30% BFS doped with 0.1856 ohm.m and 0.268 ohm.m values. The highest freeze-thaw resisting value was seen in the sample with 30% BFS with 1.35%.
Mortar, Blast Furnace Slag, Electrical Resistivity, Sodium Sulphate Test
  • [1] Baradan B., Yazıcı H. ve Aydın S., Beton. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Yayınları, İzmir: 2015.
  • [2] Jadhav, P.A. ve Kulkarni, D.K., ‘‘Effect of Replacement of Natural Sand By Manufactured Sand on the Properties of Cement Mortar,’’ International Journal of Advanced Engineering Technology, Vol. 3, No 3, (2013).
  • [3] Hiraskar, K.G. ve Patil, C. ‘‘Use of Blast Furnace Slag Aggregate in Concrete,’’ International Journal Of Scientific & Engineering Research, Volume 4, Issue 5, (2013), s 95.
  • [4] Thomas D., Concrete Durability. CRC Press, 2014.
  • [5] Babu K. D. and Kumar V. S. R., “Efficiency of GGBS in Concrete”, Cement and Concrete Research, 30, (2000), 1031- 1036.
  • [6] Erdoğan T. Y., Beton. Metu Press, 5. Baskı, 2015.
  • [7] Babu K. D. and Kumar V. S. R., “Efficiency of GGBS in Concrete”, Cement and Concrete Research, 30, (2000), 1031- 1036.
  • [8] Salem T.M., “Electrical conductivity and rheological properties of ordinary portland cement–silica fume and calcium hydroxide–silica fume pastes”, Cem Concr Res, 32, (2002), 1473-1481.
  • [9] McCarter W.J., Starrs G. and Chrisp T.M., Electrical conductivity, diffusion, and permeability of portland cement-based mortars, Cem Concr Res, 30, (2000), 1395-1400.
  • [10] Topçu İ. B., Uygunoğlu T. ve Hocaoğlu İ., “Yüksek fırın cüruf katkılı çimento pastalarının elektriksel özdirençlerinin araştırılması”, Politeknik Dergisi, 21(2), (2018), 257-264.
  • [11] Binici H. et al, ‘‘Kum Boyutunda Yüksek Fırın Cürufu ve Pomza Katkılı Beton Boruların Durabilite Özelliklerinin Araştırılması’’, Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 14.3, (2012), 33-44.
  • [12] Nataraja, M.C., Kumar, D.P.G., Manu, A.S. ve Sanjay, M.C., ‘‘Use Of Granulated Blast Furnace Slag As Fine Aggregate In Cement Mortar,’’ International Jounal of Structural and Civil Engineering Research. No.2, May, (2013).
  • [13] Babu, J.S. ve Mahendran, N., ‘‘Experimental Studies on Concrete Replacing Fine Aggregate with Blast Furnace Slags,’’ International Journal of Engineering Trends and Technology (IJETT). Volume 10, Number 8, Apr, (2014).
  • [14] Autade, P. B., & Saluja, H. S. J. S. Effect of Steel Slag as a Replacement of Fine Aggregate in M40 Grade of Concrete, 2016.
  • [15] Şeker, O., ‘‘Granüle Yüksek Fırın Cürufunun Kendiliğinden Yerleşen Beton Özelliklerine Etkisi,’’ Master's thesis, Bartın Üniversitesi, Fen Bilimleri Enstitüsü, 2019.
  • [16] Çimento-Genel Çimentolar-Bileşim, Özellikler ve Uygunluk Kriterleri, TS EN 197-1, 2002.
  • [17] Çimento Deney Metotları-Dayanım Tayini, EN 196-1, 2002.
  • [18] Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate, ASTM C88-05, 2005.
  • [19] Yazıcı H., ‘‘Yüksek fırın cürufu katkılı harçların sülfat dayanıklılığının incelenmesi’’, DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 8, 1, (Ocak 2006), 51.
  • [20] Qasrawi, H., Shalabi, F., & Asi, I., ‘‘Use of low CaO unprocessed steel slag in concrete as fine aggregate,’’ Construction and Building Materials, 23(2), (2009), 1118-1125.
  • [21] Soroka I., “Concrete in Hot Environments”, National Building Research Institute, Faculty of Civil Engineering, Technion-Israel Institute of Technology, Haifa, Israel, 1993.
  • [22] Yeau K. Y. and Kim E. K., “An Experimental Study on Corrosion Resistance of Concrete with Ground Granulated Blast-Furnace Slag”, Cement and Concrete Research, 35, (2005), 1391-1399.
  • [23] Newman J., and Choo B.S., ‘‘Advanced Concrete Technology’’, Elsevier Publishing, Great Britain, 2003.
  • [24] Binici H., Eken M. ve Dinçer A., ‘‘Silis Dumanı, Uçucu Kül ve Yüksek Fırın Cürufu Katkılı Betonların Bazı Durabilite Özellikleri’’, Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 28(1), (2013), 11-21.
Primary Language en
Subjects Engineering
Journal Section Research Article
Authors

Orcid: 0000-0001-5007-1788
Author: Hüseyin BORAN (Primary Author)
Institution: Adıyaman Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü
Country: Turkey


Orcid: 0000-0001-7559-5684
Author: Osman GÜNAYDIN
Institution: Adıyaman Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü
Country: Turkey


Orcid: 0000-0001-7617-198X
Author: Kadir GÜÇLÜER
Institution: Adıyaman Üniversitesi Teknik Bilimler Meslek Yüksekokulu İnşaat Bölümü
Country: Turkey


Dates

Publication Date : December 21, 2020

Bibtex @research article { mjen795891, journal = {MANAS Journal of Engineering}, issn = {1694-7398}, eissn = {1694-7398}, address = {}, publisher = {Kyrgyz-Turkish Manas University}, year = {2020}, volume = {8}, pages = {138 - 143}, doi = {10.51354/mjen.795891}, title = {Investigation of Engineering Properties of Blast Furnace Slag Additive Mortars}, key = {cite}, author = {Boran, Hüseyin and Günaydın, Osman and Güçlüer, Kadir} }
APA Boran, H , Günaydın, O , Güçlüer, K . (2020). Investigation of Engineering Properties of Blast Furnace Slag Additive Mortars . MANAS Journal of Engineering , 8 (2) , 138-143 . DOI: 10.51354/mjen.795891
MLA Boran, H , Günaydın, O , Güçlüer, K . "Investigation of Engineering Properties of Blast Furnace Slag Additive Mortars" . MANAS Journal of Engineering 8 (2020 ): 138-143 <https://dergipark.org.tr/en/pub/mjen/issue/58226/795891>
Chicago Boran, H , Günaydın, O , Güçlüer, K . "Investigation of Engineering Properties of Blast Furnace Slag Additive Mortars". MANAS Journal of Engineering 8 (2020 ): 138-143
RIS TY - JOUR T1 - Investigation of Engineering Properties of Blast Furnace Slag Additive Mortars AU - Hüseyin Boran , Osman Günaydın , Kadir Güçlüer Y1 - 2020 PY - 2020 N1 - doi: 10.51354/mjen.795891 DO - 10.51354/mjen.795891 T2 - MANAS Journal of Engineering JF - Journal JO - JOR SP - 138 EP - 143 VL - 8 IS - 2 SN - 1694-7398-1694-7398 M3 - doi: 10.51354/mjen.795891 UR - https://doi.org/10.51354/mjen.795891 Y2 - 2020 ER -
EndNote %0 MANAS Journal of Engineering Investigation of Engineering Properties of Blast Furnace Slag Additive Mortars %A Hüseyin Boran , Osman Günaydın , Kadir Güçlüer %T Investigation of Engineering Properties of Blast Furnace Slag Additive Mortars %D 2020 %J MANAS Journal of Engineering %P 1694-7398-1694-7398 %V 8 %N 2 %R doi: 10.51354/mjen.795891 %U 10.51354/mjen.795891
ISNAD Boran, Hüseyin , Günaydın, Osman , Güçlüer, Kadir . "Investigation of Engineering Properties of Blast Furnace Slag Additive Mortars". MANAS Journal of Engineering 8 / 2 (December 2020): 138-143 . https://doi.org/10.51354/mjen.795891
AMA Boran H , Günaydın O , Güçlüer K . Investigation of Engineering Properties of Blast Furnace Slag Additive Mortars. MJEN. 2020; 8(2): 138-143.
Vancouver Boran H , Günaydın O , Güçlüer K . Investigation of Engineering Properties of Blast Furnace Slag Additive Mortars. MANAS Journal of Engineering. 2020; 8(2): 138-143.
IEEE H. Boran , O. Günaydın and K. Güçlüer , "Investigation of Engineering Properties of Blast Furnace Slag Additive Mortars", MANAS Journal of Engineering, vol. 8, no. 2, pp. 138-143, Dec. 2020, doi:10.51354/mjen.795891