Year 2020, Volume 8 , Issue 2, Pages 90 - 98 2020-12-21

Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts

Ömer ER [1] , Ali CAVAK [2] , Adnan ALDEMİR [3] , Hilal DEMİR KIVRAK [4]


In this study, carbon nanotube (CNT) supported Pd catalysts at varying Pd molar ratios are prepared via NaBH4 reduction method. Catalysts prepared for hydrazine electrooxidation are characterized via N2 adsorption-desorption measurements (BET), X-ray photoelectron spectroscopy (XPS), and transmission electron microscope (TEM). Electrochemical measurements are performed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques by CHI660E potentiostat in a three-electrode system. According to the characterization results, Pd/CNT catalysts are successfully synthesized. For 5% Pd/CNT catalyst, the average particle size and the surface area determined as 5.17 nm and 773.10 m2 g-1 via TEM and BET, respectively. Between the Pd containing (0.1-20 wt %) CNT supported catalysts prepared, 5% Pd / CNT catalyst shows the best current density as 6.81 mA cm-2 (1122.63 mA mg-1 Pd). Furthermore, 5% Pd/CNT catalyst shows littlest charge transfer resistance (Rct) compared to Pd/CNT catalysts.
Pd, carbon nanotube, hydrazine, electrooxidation, direct liquid fuel cells, anode, characterization
  • [1] O.F. Er, A. Caglar, B. Ulas, H. Kivrak, A. Kivrak, Novel carbon nanotube supported Co@ Ag@ Pd formic acid electrooxidation catalysts prepared via sodium borohydride sequential reduction method, Materials Chemistry and Physics, 241 (2020) 122422.
  • [2] M.W. Ellis, M.R. Von Spakovsky, D.J. Nelson, Fuel cell systems: efficient, flexible energy conversion for the 21st century, Proceedings of the IEEE, 89 (2001) 1808-1818.
  • [3] D.Ş. Armeanu, Ş.C. Gherghina, G. Pasmangiu, Exploring the causal nexus between energy consumption, environmental pollution and economic growth: Empirical evidence from central and Eastern Europe, Energies, 12 (2019) 3704
  • [4] B. Ulas, A. Caglar, O. Sahin, H. Kivrak, Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation, Journal of colloid and interface science, 532 (2018) 47-57.
  • [5] H. Kivrak, D. Atbas, O. Alal, M.S. Çögenli, A. Bayrakceken, S.O. Mert, O. Sahin, A complementary study on novel PdAuCo catalysts: Synthesis, characterization, direct formic acid fuel cell application, and exergy analysis, International Journal of Hydrogen Energy, 43 (2018) 21886-21898.
  • [6] O. Sahin, D. Duzenli, H. Kivrak, An ethanol electrooxidation study on carbon-supported Pt-Ru nanoparticles for direct ethanol fuel cells, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38 (2016) 628-634.
  • [7] H.D. KIVRAK, The effect of temperature and concentration for methanol electrooxidation on Pt-Ru catalyst synthesized by microwave assisted route, Turkish Journal of Chemistry, 39 (2015) 563-575.
  • [8] T.T.K. Huynh, T.Q.N. Tran, H.H. Yoon, W.-J. Kim, I.T. Kim, AgNi@ ZnO nanorods grown on graphene as an anodic catalyst for direct glucose fuel cells, Korean Journal of Chemical Engineering, 36 (2019) 1193-1200.
  • [9] B. Ulas, A. Caglar, A. Kivrak, H. Kivrak, Atomic molar ratio optimization of carbon nanotube supported PdAuCo catalysts for ethylene glycol and methanol electrooxidation in alkaline media, Chemical Papers, 73 (2019) 425-434.
  • [10] Y. Wang, Q. Wang, L.-y. Wan, Y. Han, Y. Hong, L. Huang, X. Yang, Y. Wang, K. Zaghib, Z. Zhou, KOH-doped polybenzimidazole membrane for direct hydrazine fuel cell, Journal of Colloid and Interface Science, 563 (2020) 27-32.
  • [11] E. Granot, B. Filanovsky, I. Presman, I. Kuras, F. Patolsky, Hydrazine/air direct-liquid fuel cell based on nanostructured copper anodes, Journal of Power Sources, 204 (2012) 116-121.
  • [12] K. Yamada, K. Asazawa, K. Yasuda, T. Ioroi, H. Tanaka, Y. Miyazaki, T. Kobayashi, Investigation of PEM type direct hydrazine fuel cell, Journal of power sources, 115 (2003) 236-242.
  • [13] Q. Yi, H. Chu, M. Tang, Y. Zhang, X. Liu, Z. Zhou, H. Nie, A novel membraneless direct hydrazine/air fuel cell, Fuel cells, 14 (2014) 827-833.
  • [14] T.Y. Burshtein, E.M. Farber, K. Ojha, D. Eisenberg, Revealing structure–activity links in hydrazine oxidation: doping and nanostructure in carbide–carbon electrocatalysts, Journal of Materials Chemistry A, 7 (2019) 23854-23861.
  • [15] W.X. Yin, Z.P. Li, J.K. Zhu, H.Y. Qin, Effects of NaOH addition on performance of the direct hydrazine fuel cell, Journal of power sources, 182 (2008) 520-523.
  • [16] R. Crisafulli, V.V.S. de Barros, F.E.R. de Oliveira, T. de Araújo Rocha, S. Zignani, L. Spadaro, A. Palella, J.A. Dias, J.J. Linares, On the promotional effect of Cu on Pt for hydrazine electrooxidation in alkaline medium, Applied Catalysis B: Environmental, 236 (2018) 36-44.
  • [17] W. Wang, Y. Wang, S. Liu, M. Yahia, Y. Dong, Z. Lei, Carbon-supported phosphatized CuNi nanoparticle catalysts for hydrazine electrooxidation, International Journal of Hydrogen Energy, 44 (2019) 10637-10645.
  • [18] B. Liang, Y. Wang, X. Liu, T. Tan, L. Zhang, W. Wang, Nickel–cobalt alloy doping phosphorus as advanced electrocatalyst for hydrazine oxidation, Journal of Alloys and Compounds, 807 (2019) 151648.
  • [19] T. Wang, Q. Wang, Y. Wang, Y. Da, W. Zhou, Y. Shao, D. Li, S. Zhan, J. Yuan, H. Wang, Atomically Dispersed Semimetallic Selenium on Porous Carbon Membrane as an Electrode for Hydrazine Fuel Cells, Angewandte Chemie, 131 (2019) 13600-13605.
  • [20] X. Liu, Y. Li, N. Chen, D. Deng, X. Xing, Y. Wang, Ni3S2@ Ni foam 3D electrode prepared via chemical corrosion by sodium sulfide and using in hydrazine electro-oxidation, Electrochimica Acta, 213 (2016) 730-739.
  • [21] C. Li, M. Li, X. Bo, L. Yang, A.C. Mtukula, L. Guo, Facile synthesis of electrospinning Mn2O3-Fe2O3 loaded carbon fibers for electrocatalysis of hydrogen peroxide reduction and hydrazine oxidation, Electrochimica Acta, 211 (2016) 255-264.
  • [22] S.J. Lao, H.Y. Qin, L.Q. Ye, B.H. Liu, Z.P. Li, A development of direct hydrazine/hydrogen peroxide fuel cell, Journal of Power Sources, 195 (2010) 4135-4138.
  • [23] J.B. Raoof, R. Ojani, F. Jamali, S.R. Hosseini, Electrochemical detection of hydrazine using a copper oxide nanoparticle modified glassy carbon electrode, Caspian Journal of Chemistry, 1 (2012) 73-85.
  • [24] X. Lin, H. Wen, D.-X. Zhang, G.-X. Cao, P. Wang, Highly dispersed nickel nitride nanoparticles on nickel nanosheets as an active catalyst for hydrazine electrooxidation, Journal of Materials Chemistry A, 8 (2020) 632-638.
  • [25] A. Zabielaitė, A. Balčiūnaitė, D. Šimkūnaitė, S. Lichušina, I. Stalnionienė, B. Šimkūnaitė-Stanynienė, L. Naruškevičius, L. Tamašauskaitė-Tamašiūnaitė, E. Norkus, A. Selskis, High Performance Direct N2H4-H2O2 Fuel Cell Using Fiber-Shaped Co Decorated with Pt Crystallites as Anode Electrocatalysts, Journal of The Electrochemical Society, 167 (2020) 054502.
  • [26] H. Wen, G.-X. Cao, M.-H. Chen, Y.-P. Qiu, L.-Y. Gan, P. Wang, Surface phosphorization of hierarchically nanostructured nickel molybdenum oxide derived electrocatalyst for direct hydrazine fuel cell, Applied Catalysis B: Environmental, 268 (2020) 118388.
  • [27] Y. Lei, Y. Liu, B. Fan, L. Mao, D. Yu, Y. Huang, F. Guo, Facile fabrication of hierarchically porous Ni foam@ Ag-Ni catalyst for efficient hydrazine oxidation in alkaline medium, Journal of the Taiwan Institute of Chemical Engineers, 105 (2019) 75-84.
  • [28] G.-W. Yang, G.-Y. Gao, C. Wang, C.-L. Xu, H.-L. Li, Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation, Carbon, 46 (2008) 747-752.
  • [29] H. Gao, Y. Wang, F. Xiao, C.B. Ching, H. Duan, Growth of copper nanocubes on graphene paper as free-standing electrodes for direct hydrazine fuel cells, The Journal of Physical Chemistry C, 116 (2012) 7719-7725.
  • [30] T. Asset, A. Roy, T. Sakamoto, M. Padilla, I. Matanovic, K. Artyushkova, A. Serov, F. Maillard, M. Chatenet, K. Asazawa, Highly active and selective nickel molybdenum catalysts for direct hydrazine fuel cell, Electrochimica Acta, 215 (2016) 420-426.
  • [31] W. Liu, J. Xie, Y. Guo, S. Lou, L. Gao, B. Tang, Sulfurization-induced edge amorphization in copper–nickel–cobalt layered double hydroxide nanosheets promoting hydrazine electro-oxidation, Journal of Materials Chemistry A, 7 (2019) 24437-24444.
  • [32] L.-X. Chen, L.-Y. Jiang, A.-J. Wang, Q.-Y. Chen, J.-J. Feng, Simple synthesis of bimetallic AuPd dendritic alloyed nanocrystals with enhanced electrocatalytic performance for hydrazine oxidation reaction, Electrochimica Acta, 190 (2016) 872-878.
  • [33] A. Zhao, H. Sun, L. Chen, Y. Huang, X. Lu, Development of highly efficient and scalable free-standing electrodes for the fabrication of hydrazine-O2 fuel cell, Materials Research Express, 6 (2019) 085533.
  • [34] K. Akbar, J.H. Kim, Z. Lee, M. Kim, Y. Yi, S.-H. Chun, Superaerophobic graphene nano-hills for direct hydrazine fuel cells, NPG Asia Materials, 9 (2017) e378-e378.
  • [35] X. Yan, F. Meng, Y. Xie, J. Liu, Y. Ding, Direct N 2 H 4/H 2 O 2 fuel cells powered by nanoporous gold leaves, Scientific reports, 2 (2012) 941.
  • [36] J. Ding, P. Kannan, P. Wang, S. Ji, H. Wang, Q. Liu, H. Gai, F. Liu, R. Wang, Synthesis of nitrogen-doped MnO/carbon network as an advanced catalyst for direct hydrazine fuel cells, Journal of Power Sources, 413 (2019) 209-215.
  • [37] K.A. Wepasnick, B.A. Smith, J.L. Bitter, D.H. Fairbrother, Chemical and structural characterization of carbon nanotube surfaces, Analytical and bioanalytical chemistry, 396 (2010) 1003-1014.
  • [38] B. Qi, L. Di, W. Xu, X. Zhang, Dry plasma reduction to prepare a high performance Pd/C catalyst at atmospheric pressure for CO oxidation, Journal of Materials Chemistry A, 2 (2014) 11885-11890.
  • [39] A. Caglar, H. Kivrak, Highly active carbon nanotube supported PdAu alloy catalysts for ethanol electrooxidation in alkaline environment, International Journal of Hydrogen Energy, 44 (2019) 11734-11743.
  • [40] A. Eshghi, Graphene/Ni–Fe layered double hydroxide nano composites as advanced electrode materials for glucose electro oxidation, International Journal of Hydrogen Energy, 42 (2017) 15064-15072.
  • [41] W. Qu, Z. Wang, X. Sui, D. Gu, An efficient antimony doped tin oxide and carbon nanotubes hybrid support of Pd catalyst for formic acid electrooxidation, international journal of hydrogen energy, 39 (2014) 5678-5688.
Primary Language en
Subjects Engineering
Journal Section Research Article
Authors

Orcid: 0000-0002-7179-726X
Author: Ömer ER
Institution: VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0003-1531-9623
Author: Ali CAVAK
Institution: VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0001-9884-0961
Author: Adnan ALDEMİR
Institution: VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0001-8001-7854
Author: Hilal DEMİR KIVRAK (Primary Author)
Institution: VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ
Country: Turkey


Dates

Publication Date : December 21, 2020

Bibtex @research article { mjen801182, journal = {MANAS Journal of Engineering}, issn = {1694-7398}, eissn = {1694-7398}, address = {}, publisher = {Kyrgyz-Turkish Manas University}, year = {2020}, volume = {8}, pages = {90 - 98}, doi = {10.51354/mjen.801182}, title = {Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts}, key = {cite}, author = {Er, Ömer and Cavak, Ali and Aldemi̇r, Adnan and Demi̇r Kıvrak, Hilal} }
APA Er, Ö , Cavak, A , Aldemi̇r, A , Demi̇r Kıvrak, H . (2020). Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts . MANAS Journal of Engineering , 8 (2) , 90-98 . DOI: 10.51354/mjen.801182
MLA Er, Ö , Cavak, A , Aldemi̇r, A , Demi̇r Kıvrak, H . "Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts" . MANAS Journal of Engineering 8 (2020 ): 90-98 <https://dergipark.org.tr/en/pub/mjen/issue/58226/801182>
Chicago Er, Ö , Cavak, A , Aldemi̇r, A , Demi̇r Kıvrak, H . "Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts". MANAS Journal of Engineering 8 (2020 ): 90-98
RIS TY - JOUR T1 - Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts AU - Ömer Er , Ali Cavak , Adnan Aldemi̇r , Hilal Demi̇r Kıvrak Y1 - 2020 PY - 2020 N1 - doi: 10.51354/mjen.801182 DO - 10.51354/mjen.801182 T2 - MANAS Journal of Engineering JF - Journal JO - JOR SP - 90 EP - 98 VL - 8 IS - 2 SN - 1694-7398-1694-7398 M3 - doi: 10.51354/mjen.801182 UR - https://doi.org/10.51354/mjen.801182 Y2 - 2020 ER -
EndNote %0 MANAS Journal of Engineering Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts %A Ömer Er , Ali Cavak , Adnan Aldemi̇r , Hilal Demi̇r Kıvrak %T Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts %D 2020 %J MANAS Journal of Engineering %P 1694-7398-1694-7398 %V 8 %N 2 %R doi: 10.51354/mjen.801182 %U 10.51354/mjen.801182
ISNAD Er, Ömer , Cavak, Ali , Aldemi̇r, Adnan , Demi̇r Kıvrak, Hilal . "Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts". MANAS Journal of Engineering 8 / 2 (December 2020): 90-98 . https://doi.org/10.51354/mjen.801182
AMA Er Ö , Cavak A , Aldemi̇r A , Demi̇r Kıvrak H . Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts. MJEN. 2020; 8(2): 90-98.
Vancouver Er Ö , Cavak A , Aldemi̇r A , Demi̇r Kıvrak H . Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts. MANAS Journal of Engineering. 2020; 8(2): 90-98.
IEEE Ö. Er , A. Cavak , A. Aldemi̇r and H. Demi̇r Kıvrak , "Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts", MANAS Journal of Engineering, vol. 8, no. 2, pp. 90-98, Dec. 2020, doi:10.51354/mjen.801182