Anion effect on obtaining nano-sized metal particules by reduction reaction
Year 2022,
Volume: 10 Issue: 1, 95 - 104, 30.06.2022
Sebati İlhan
,
Melda Bolat
,
Kadir Erol
,
Dursun Ali Köse
Abstract
The word “nano” means; one in a billion of a physical mass. Nanotechnology has been frequently beneficial branch of science in recent years by applying nanoparticules to various fields. Synthesis of particules in nano is size, has increased the covered surface area in unit volume and this made expanding of using nanoparticules in many different areas. Especially the metal nanoparticules have many advantages leading to development of many ways of synthesis. One of these methods of synthesis is “chemical reduction”.
This work makes a research on the anion effects on the size mass nanoparticules of metals Cu(II), Ni(II), Co(II), Zn(II) and Mn(II) after reduction to nano size of sodium bor hidrur which belongs to salt of asetat and chlor, nitrate, sulfate. Depending on the radius ratios and solubility values of metal cations and anions, the nanoparticle obtained from Cu(CH3COO)2 salt has the smallest radius. Nanometal particles with the largest radius were obtained by reduction of Cl- ion salts. Size analyze and passing electrone microscope (SEM) analysis made about the characterization of synthesised nano particules.
References
- Referans 1
A.G. Mamalis, Recent advances in nanotechnology, J. Mater. Process Technol., 181(1-3) (2007) 52-58. doi:10.1016/j.jmatprotec.2006.03.052.
- Referans 2
[2]. N. Kulkarni, U. Muddapur, Biosynthesis of Metal Nanoparticles: A Review, J. Nanotechnol., (2014) 510246. doi:10.1155/2014/510246.
- Referans 3
F. J. Heiligtag and M. Niederberger, ‘The fascinating world of nanoparticle research’, Mater. Today, vol. 16, no. 7–8, pp. 262–271, 2013, doi: 10.1016/j.mattod.2013.07.004.
- Referans 4
J. R. Lead and K. J. Wilkinson, ‘Aquatic colloids and nanoparticles: Current knowledge and future trends’, Environ. Chem., vol. 3, no. 3, pp. 159–171, 2006, doi: 10.1071/EN06025.
- Referans 5
R. M. Hough, R. R. P. Noble, and M. Reich, ‘Natural gold nanoparticles’, Ore Geol. Rev., vol. 42, no. 1, pp. 55–61, 2011, doi: 10.1016/j.oregeorev.2011.07.003.
- Referans 6
R. Dittrich, S. Stopić, and B. Friedrich, ‘Mechanism of nanogold formation by ultrasonic spray pyrolysis’, Proc. - Eur. Metall. Conf. EMC 2011, vol. 3, pp. 1065–1076, 2011.
- Referans 7
T. Naseem and T. Durrani, ‘The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review’, Environ. Chem. Ecotoxicol., vol. 3, pp. 59–75, 2021, doi: 10.1016/j.enceco.2020.12.001.
- Referans 8
Y. H. Kim, D. K. Lee, H. G. Cha, C. W. Kim, and Y. S. Kang, ‘Synthesis and characterization of antibacterial Ag - SiO2 nanocomposite’, J. Phys. Chem. C, vol. 111, no. 9, pp. 3629–3635, 2007, doi: 10.1021/jp068302w.
- Referans 9
S. Chandra, P. Das, S. Bag, D. Laha, and P. Pramanik, ‘Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles’, Nanoscale, vol. 3, no. 4, pp. 1533–1540, 2011, doi: 10.1039/c0nr00735h.
- Referans 10
H. Rui, R. Xing, Z. Xu, Y. Hou, S. Goo, and S. Sun, ‘Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles’, Adv. Mater., vol. 22, no. 25, pp. 2729–2742, 2010, doi: 10.1002/adma.201000260.
- Referans 11
T. Montini, M. Melchionna, M. Monai, and P. Fornasiero, ‘Fundamentals and Catalytic Applications of CeO2-Based Materials’, Chem. Rev., vol. 116, no. 10, pp. 5987–6041, 2016, doi: 10.1021/acs.chemrev.5b00603.
- Referans 12
M. Rizwan et al., ‘Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review’, J. Hazard. Mater., vol. 322, pp. 2–16, 2017, doi: 10.1016/j.jhazmat.2016.05.061.
- Referans 13
H. S. Tuli, D. Kashyap, S. K. Bedi, P. Kumar, G. Kumar, and S. S. Sandhu, ‘Molecular aspects of metal oxide nanoparticle (MO-NPs) mediated pharmacological effects’, Life Sci., vol. 143, pp. 71–79, 2015, doi: 10.1016/j.lfs.2015.10.021.
- Referans 14
P. Falcaro et al., ‘Application of metal and metal oxide nanoparticles at MOFs’, Coord. Chem. Rev., vol. 307, pp. 237–254, 2016, doi: 10.1016/j.ccr.2015.08.002.
- Referans 15
S. S. Sana et al., ‘Recent advances in essential oils-based metal nanoparticles: A review on recent developments and biopharmaceutical applications’, J. Mol. Liq., vol. 333, p. 115951, 2021, doi: 10.1016/j.molliq.2021.115951.
- Referans 16
G. Yang et al., ‘Understanding the relationship between particle size and ultrasonic treatment during the synthesis of metal nanoparticles’, Ultrason. Sonochem., vol. 73, p. 105497, 2021, doi: 10.1016/j.ultsonch.2021.105497.
- Referans 17
D. Kishore Kumar et al., ‘Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review’, Mater. Sci. Energy Technol., vol. 3, pp. 472–481, 2020, doi: 10.1016/j.mset.2020.03.003.
- Referans 18
S. Khan et al., ‘Enzyme–polymeric/inorganic metal oxide/hybrid nanoparticle bio-conjugates in the development of therapeutic and biosensing platforms’, J. Adv. Res., no. xxxx, 2021, doi: 10.1016/j.jare.2021.01.012.
- Referans 19
I. Khan, K. Saeed, and I. Khan, ‘Nanoparticles: Properties, applications and toxicities’, Arab. J. Chem., vol. 12, no. 7, pp. 908–931, 2019, doi: 10.1016/j.arabjc.2017.05.011.
- Referans 20
A. C. Anselmo and S. Mitragotri, ‘Nanoparticles in the clinic’, Bioeng. Transl. Med., vol. 1, no. 1, pp. 10–29, 2016, doi: 10.1002/btm2.10003.
- Referans 21
R. D. SHANNON, ‘Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides’, Acta Cryst., vol. A, no. 32, pp. 751–767, 1976, doi: 10.1107/S0567739476001551.
- Referans 22
R. G. Pearson, ‘Hard and Soft Acids and Bases’, J. Am. Chem. Soc., vol. 85, no. 22, pp. 3533–3539, 1963, doi: 10.1021/ja00905a001.
- Referans 23
R. G. Pearson, ‘Hard and soft acids and bases, HSAB, part I: Fundamental principles’, J. Chem. Educ., vol. 45, no. 9, pp. 581–587, 1968, doi: 10.1021/ed045p581.
- Referans 24
H. D. B. Jenkins and K. P. Thakur, ‘Reappraisal of thermochemical radii for complex ions’, J. Chem. Educ., vol. 56, no. 9, pp. 576–577, 1979, doi: 10.1021/ed056p576.
Year 2022,
Volume: 10 Issue: 1, 95 - 104, 30.06.2022
Sebati İlhan
,
Melda Bolat
,
Kadir Erol
,
Dursun Ali Köse
References
- Referans 1
A.G. Mamalis, Recent advances in nanotechnology, J. Mater. Process Technol., 181(1-3) (2007) 52-58. doi:10.1016/j.jmatprotec.2006.03.052.
- Referans 2
[2]. N. Kulkarni, U. Muddapur, Biosynthesis of Metal Nanoparticles: A Review, J. Nanotechnol., (2014) 510246. doi:10.1155/2014/510246.
- Referans 3
F. J. Heiligtag and M. Niederberger, ‘The fascinating world of nanoparticle research’, Mater. Today, vol. 16, no. 7–8, pp. 262–271, 2013, doi: 10.1016/j.mattod.2013.07.004.
- Referans 4
J. R. Lead and K. J. Wilkinson, ‘Aquatic colloids and nanoparticles: Current knowledge and future trends’, Environ. Chem., vol. 3, no. 3, pp. 159–171, 2006, doi: 10.1071/EN06025.
- Referans 5
R. M. Hough, R. R. P. Noble, and M. Reich, ‘Natural gold nanoparticles’, Ore Geol. Rev., vol. 42, no. 1, pp. 55–61, 2011, doi: 10.1016/j.oregeorev.2011.07.003.
- Referans 6
R. Dittrich, S. Stopić, and B. Friedrich, ‘Mechanism of nanogold formation by ultrasonic spray pyrolysis’, Proc. - Eur. Metall. Conf. EMC 2011, vol. 3, pp. 1065–1076, 2011.
- Referans 7
T. Naseem and T. Durrani, ‘The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review’, Environ. Chem. Ecotoxicol., vol. 3, pp. 59–75, 2021, doi: 10.1016/j.enceco.2020.12.001.
- Referans 8
Y. H. Kim, D. K. Lee, H. G. Cha, C. W. Kim, and Y. S. Kang, ‘Synthesis and characterization of antibacterial Ag - SiO2 nanocomposite’, J. Phys. Chem. C, vol. 111, no. 9, pp. 3629–3635, 2007, doi: 10.1021/jp068302w.
- Referans 9
S. Chandra, P. Das, S. Bag, D. Laha, and P. Pramanik, ‘Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles’, Nanoscale, vol. 3, no. 4, pp. 1533–1540, 2011, doi: 10.1039/c0nr00735h.
- Referans 10
H. Rui, R. Xing, Z. Xu, Y. Hou, S. Goo, and S. Sun, ‘Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles’, Adv. Mater., vol. 22, no. 25, pp. 2729–2742, 2010, doi: 10.1002/adma.201000260.
- Referans 11
T. Montini, M. Melchionna, M. Monai, and P. Fornasiero, ‘Fundamentals and Catalytic Applications of CeO2-Based Materials’, Chem. Rev., vol. 116, no. 10, pp. 5987–6041, 2016, doi: 10.1021/acs.chemrev.5b00603.
- Referans 12
M. Rizwan et al., ‘Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review’, J. Hazard. Mater., vol. 322, pp. 2–16, 2017, doi: 10.1016/j.jhazmat.2016.05.061.
- Referans 13
H. S. Tuli, D. Kashyap, S. K. Bedi, P. Kumar, G. Kumar, and S. S. Sandhu, ‘Molecular aspects of metal oxide nanoparticle (MO-NPs) mediated pharmacological effects’, Life Sci., vol. 143, pp. 71–79, 2015, doi: 10.1016/j.lfs.2015.10.021.
- Referans 14
P. Falcaro et al., ‘Application of metal and metal oxide nanoparticles at MOFs’, Coord. Chem. Rev., vol. 307, pp. 237–254, 2016, doi: 10.1016/j.ccr.2015.08.002.
- Referans 15
S. S. Sana et al., ‘Recent advances in essential oils-based metal nanoparticles: A review on recent developments and biopharmaceutical applications’, J. Mol. Liq., vol. 333, p. 115951, 2021, doi: 10.1016/j.molliq.2021.115951.
- Referans 16
G. Yang et al., ‘Understanding the relationship between particle size and ultrasonic treatment during the synthesis of metal nanoparticles’, Ultrason. Sonochem., vol. 73, p. 105497, 2021, doi: 10.1016/j.ultsonch.2021.105497.
- Referans 17
D. Kishore Kumar et al., ‘Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review’, Mater. Sci. Energy Technol., vol. 3, pp. 472–481, 2020, doi: 10.1016/j.mset.2020.03.003.
- Referans 18
S. Khan et al., ‘Enzyme–polymeric/inorganic metal oxide/hybrid nanoparticle bio-conjugates in the development of therapeutic and biosensing platforms’, J. Adv. Res., no. xxxx, 2021, doi: 10.1016/j.jare.2021.01.012.
- Referans 19
I. Khan, K. Saeed, and I. Khan, ‘Nanoparticles: Properties, applications and toxicities’, Arab. J. Chem., vol. 12, no. 7, pp. 908–931, 2019, doi: 10.1016/j.arabjc.2017.05.011.
- Referans 20
A. C. Anselmo and S. Mitragotri, ‘Nanoparticles in the clinic’, Bioeng. Transl. Med., vol. 1, no. 1, pp. 10–29, 2016, doi: 10.1002/btm2.10003.
- Referans 21
R. D. SHANNON, ‘Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides’, Acta Cryst., vol. A, no. 32, pp. 751–767, 1976, doi: 10.1107/S0567739476001551.
- Referans 22
R. G. Pearson, ‘Hard and Soft Acids and Bases’, J. Am. Chem. Soc., vol. 85, no. 22, pp. 3533–3539, 1963, doi: 10.1021/ja00905a001.
- Referans 23
R. G. Pearson, ‘Hard and soft acids and bases, HSAB, part I: Fundamental principles’, J. Chem. Educ., vol. 45, no. 9, pp. 581–587, 1968, doi: 10.1021/ed045p581.
- Referans 24
H. D. B. Jenkins and K. P. Thakur, ‘Reappraisal of thermochemical radii for complex ions’, J. Chem. Educ., vol. 56, no. 9, pp. 576–577, 1979, doi: 10.1021/ed056p576.