Research Article
BibTex RIS Cite

Development and application of bimetallic catalysts supported carbon nanotube for 1-propanol electrooxidation

Year 2022, Volume: 10 Issue: 2, 138 - 144, 31.12.2022
https://doi.org/10.51354/mjen.1200536

Abstract

Herein, carbon nanotube supported bimetallic catalysts (PtBi/CNT) are synthesized at various metals weight loadings by NaBH4 reduction method. The surface morphology and crystal structure of the catalysts are investigated via X-ray diffraction (XRD) and electron microscopy with energy dispersive X-ray (SEM-EDX) advance surface methods. According to XRD results, the crystal size of PtBi(90:10)/CNT catalyst is determined as 4.66 nm. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA) electrochemical techniques are used to determine 1-propanol electrooxidation activities of the catalysts. The highest specific activity and mass activity are obtained with PtBi(90:10)/CNT catalyst as 5.663 mA/cm2 and 447.21 mA/mg Pt, respectively. However, it is concluded that PtBi(90:10)/CNT catalyst can be used as an anode catalyst in 1-propanol electrooxidation with long-term stability and low resistance.

Supporting Institution

Eskişehir Osmangazi Üniversitesi

Project Number

FHD-2022-2346

Thanks

Eskisehir Osmangazi University Scientific Research Projects Commission (BAP Project No: FHD-2022-2346) supported this study.

References

  • [1]. Wang C.Q., Zhang K., Xu H., Du Y.K., Goh M.C., “Anchoring gold nanoparticles on poly(3,4-ethylenedioxythiophene) (PEDOT) nanonet as three-dimensional electrocatalysts toward ethanol and 2- propanol oxidation”, Journal of Colloid and Interface Science, 541, (2019), 258-268.
  • [2]. Figueiredo M.C., Sorsa O., Doan N., Pohjalainen E., Hildebrand H., Schmuki P., Wilson B.P., Kallio T., “Direct alcohol fuel cells: Increasing platinum performance by modification with sp-group metals”, Journal of Power Sources, 275, (2015), 341-350.
  • [3]. Hu S.Z., Munoz F., Noborikawa J., Haan J., Scudiero L., Ha S., “Carbon supported Pd-based bimetallic and trimetallic catalyst for formic acid electrochemical oxidation”, Applied Catalysis B- Environmental, 180, (2016), 758-765.
  • [4]. Ulas B., Caglar A., Sahin O., Kivrak H., “Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation”, Journal of Colloid and Interface Science, 532, (2018), 47-57.
  • [5]. Kazici H.C., Yilmaz S., Sahan T., Yildiz F., Er O.F., Kivrak H., “A comprehensive study of hydrogen production from ammonia borane via PdCoAg/AC nanoparticles and anodic current in alkaline medium: experimental design with response surface methodology”, Frontiers in Energy, 14(3), (2020), 578-589.
  • [6]. Kivrak H., Atbas D., Alal O., Cogenli M.S., Bayrakceken A., Mert S.O., Sahin O., “A complementary study on novel PdAuCo catalysts: Synthesis, characterization, direct formic acid fuel cell application, and exergy analysis”, International Journal of Hydrogen Energy, 43(48), (2018), 21886-21898.
  • [7]. Baronia R., Goel J., Baijnath, Kataria V., Basu S., Singhal S.K., “Electro-oxidation of ethylene glycol on Pt-Co metal synergy for direct ethylene glycol fuel cells: Reduced graphene oxide imparting a notable surface of action”, International Journal of Hydrogen Energy, 44(20), (2019), 10023-10032.
  • [8]. Ulas B., Caglar A., Kivrak H., “Determination of optimum Pd:Ni ratio for PdxNi100-x/CNTs formic acid electrooxidation catalysts synthesized via sodium borohydride reduction method”, International Journal of Energy Research, 43(8), (2019), 3436-3445.
  • [9]. Qi Z.G., Kaufman A., “Performance of 2-propanol in direct-oxidation fuel cells”, Journal of Power Sources, 112(1), (2002), 121-129.
  • [10]. Serov A., Martinez U., Falase A., Atanassov P., “Highly active Pd-Cu catalysts for electrooxidation of 2-propanol”, Electrochemistry Communications, 22, (2012), 193-196.
  • [11]. Zhou W.Q., Wang C.Y., Xu J.K., Du Y.K., Yang P., “Enhanced electrocatalytic performance for isopropanol oxidation on Pd-Au nanoparticles dispersed on poly(p-phenylene) prepared from biphenyl”, Materials Chemistry and Physics 123(2-3), (2010), 390-395.
  • [12]. Antolini E., Gonzalez E.R., “Alkaline direct alcohol fuel cells”, Journal of Power Sources 195(11), (2010), 3431-3450.
  • [13]. Wang Y., Li L., Hu L., Zhuang L., Lu J.T., Xu B.Q., “A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages”, Electrochemistry Communications, 5(8), (2003), 662-666.
  • [14]. Spendelow J.S., Wieckowski A., “Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media”, Physical Chemistry Chemical Physics, 9(21), (2007) 2654-2675.
  • [15]. Modestov A.D., Tarasevich M.R., Pu H.T., “Study of 2-Propanol, 1-Propanol, and Acetone Electrochemical Oxidation on Pt in Gelled Phosphoric Acid at 170 degrees C”, Electrocatalysis, 7(1), (2016), 42-49.
  • [16]. Spasojevic M., Ribic-Zelenovic L., “Electrooxidation of 1-propanol on the mixture of nanoparticles of Pt and RuO2”, Monatshefte Fur Chemie, 152(5), (2021), 489-496.
  • [17]. Wang D.Y., Liu J.P., Wu Z.Y., Zhang J.H., Su Y.Z., Liu Z.L., Xu C., “Electrooxidation of Methanol, Ethanol and 1-Propanol on Pd Electrode in Alkaline Medium”, International Journal of Electrochemical Science, 4(12), (2009), 1672-1678.
  • [18]. Yi Q.F., Chu H., Chen Q.H., Yang Z., Liu X.P., “High Performance Pd, PdNi, PdSn and PdSnNi Nanocatalysts Supported on Carbon Nanotubes for Electrooxidation of C2-C4 Alcohols”, Electroanalysis, 27(2), (2015), 388-397.
  • [19]. Etesami M., Mohamed N., “A comparative electrooxidation study on simply prepared nanoparticles in acidic and alkaline media”, Chemija, 23(3), (2012), 171-179.
  • [20]. Yu E.H., Krewer U., Scott K., “Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells”, Energies, 3(8), (2010), 1499-1528.
  • [21]. Chiu W.T., Chiu Y.H., Hsieh P.Y., Chang T.F.M., Sone M., Hsu Y.J., Tixier-Mita A., Toshiyoshi H., “Nano-Au Catalysts Modified with TiO2: Enhancement of Electrocatalytic Activity for 1-Propanol Oxidation in Alkaline Media”, Journal of the Electrochemical Society, 166(12), (2019) F760-F767.
  • [22]. Jafarian M., Mirzapoor A., Danaee I., Shahnazi S.A.A., Gobal F., “A comparative study of the electrooxidation of C1 to C3 aliphatic alcohols on Ni modified graphite electrode”, Science China- Chemistry, 55(9), (2012), 1819-1824.
  • [23]. King W.D., Corn J.D., Murphy O.J., Boxall D.L., Kenik E.A., Kwiatkowski K.C., Stock S.R., Lukehart C.M., “Pt-Ru and Pt-Ru-P/carbon nanocomposites: Synthesis, characterization, and unexpected performance as direct methanol fuel cell (DMFC) anode catalysts”, Journal of Physical Chemistry B, 107(23), (2003), 5467-5474.
  • [24]. Liu J.L., Lai L.F., Sahoo N.G., Zhou W.J., Shen Z.X., Chan S.H., “Carbon Nanotube-Based Materials for Fuel Cell Applications”, Australian Journal of Chemistry, 65(9), (2012), 1213-1222.
  • [25]. Ma M., You S.J., Gong X.B., Dai Y., Zou J.L., Fu H.G., “Silver/iron oxide/graphitic carbon composites as bacteriostatic catalysts for enhancing oxygen reduction in microbial fuel cells”, Journal of Power Sources, 283, (2015), 74-83.
  • [26]. Kim J.H., Choi S.M., Nam S.H., Seo M.H., Choi S.H., Kim W.B., “Influence of Sn content on PtSn/C catalysts for electrooxidation of C-1-C-3 alcohols: Synthesis, characterization, and electrocatalytic activity”, Applied Catalysis B-Environmental, 82(1-2), (2008), 89-102.
  • [27]. Spasojevic M., Markovic D., Ribic-Zelenovic L., “Electrooxidation of 2-propanol on the mixture of nanoparticles of Pt and RuO2 supported on Ti”, Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics, 235(12), (2021), 1573-1588.
  • [28]. Lim E.J., Kim Y., Choi S.M., Lee S., Noh Y., Kim W.B., “Binary PdM catalysts (M = Ru, Sn, or Ir) over a reduced graphene oxide support for electro-oxidation of primary alcohols (methanol, ethanol, 1- propanol) under alkaline conditions”, Journal of Materials Chemistry A, 3(10), (2015), 5491-5500.
  • [29]. Rodrigues I.A., Bergamaski K., Nart F.C., “Probing n-propanol electrochemical oxidation on bimetallic PtRh codeposited electrodes” Journal of the Electrochemical Society, 150(2), (2003), E89- E94.
  • [30]. Funo S., Sato F., Cai Z.W., Chang G., He Y.B., Oyama M., “Codeposition of Platinum and Gold on Nickel Wire Electrodes via Galvanic Replacement Reactions for Electrocatalytic Oxidation of Alcohols”, Acs Omega, 6(28), (2021), 18395-18403.
  • [31]. Schwartz I., Jonke A.P., Josowicz M., Janata J., “Polyaniline-Supported Atomic Gold Electrodes: Comparison with Macro Electrodes”, Catalysis Letters, 142(11), (2012), 1344-1351.
  • [32]. Ulas B., Alpaslan D., Yilmaz Y., Dudu T.E., Er O.F., Kivrak H., “Disentangling the enhanced catalytic activity on Ga modified Ru surfaces for sodium borohydride electrooxidation”, Surfaces and Interfaces 23, (2021), 100999.
  • [33]. Kivrak H., Alal O., Atbas D., “Efficient and rapid microwave-assisted route to synthesize Pt-MnOx hydrogen peroxide sensor”, Electrochimica Acta, 176, (2015), 497-503.
  • [34]. Caglar A., Aldemir A., Kivrak H., “Alcohol electrooxidation study on carbon nanotube supported monometallic, Pt, Bi, and Ru catalysts”, Fullerenes Nanotubes and Carbon Nanostructures, 26(12), (2018), 863-870.
  • [35]. Ozok O., Kavak E., Er O.F., Kivrak H., Kivrak A., “Novel benzothiophene based catalyst with enhanced activity for glucose electrooxidation”, International Journal of Hydrogen Energy, 45(53), (2020), 28706-28715.
  • [36]. Caglar A., Cogenli M.S., Yurtcan A.B., Alal O., Kivrak H., “Remarkable activity of a ZnPdPt anode catalyst: Synthesis, characterization, and formic acid fuel cell performance”, Journal of Physics and Chemistry of Solids, 156, (2021), 110163.
Year 2022, Volume: 10 Issue: 2, 138 - 144, 31.12.2022
https://doi.org/10.51354/mjen.1200536

Abstract

Project Number

FHD-2022-2346

References

  • [1]. Wang C.Q., Zhang K., Xu H., Du Y.K., Goh M.C., “Anchoring gold nanoparticles on poly(3,4-ethylenedioxythiophene) (PEDOT) nanonet as three-dimensional electrocatalysts toward ethanol and 2- propanol oxidation”, Journal of Colloid and Interface Science, 541, (2019), 258-268.
  • [2]. Figueiredo M.C., Sorsa O., Doan N., Pohjalainen E., Hildebrand H., Schmuki P., Wilson B.P., Kallio T., “Direct alcohol fuel cells: Increasing platinum performance by modification with sp-group metals”, Journal of Power Sources, 275, (2015), 341-350.
  • [3]. Hu S.Z., Munoz F., Noborikawa J., Haan J., Scudiero L., Ha S., “Carbon supported Pd-based bimetallic and trimetallic catalyst for formic acid electrochemical oxidation”, Applied Catalysis B- Environmental, 180, (2016), 758-765.
  • [4]. Ulas B., Caglar A., Sahin O., Kivrak H., “Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation”, Journal of Colloid and Interface Science, 532, (2018), 47-57.
  • [5]. Kazici H.C., Yilmaz S., Sahan T., Yildiz F., Er O.F., Kivrak H., “A comprehensive study of hydrogen production from ammonia borane via PdCoAg/AC nanoparticles and anodic current in alkaline medium: experimental design with response surface methodology”, Frontiers in Energy, 14(3), (2020), 578-589.
  • [6]. Kivrak H., Atbas D., Alal O., Cogenli M.S., Bayrakceken A., Mert S.O., Sahin O., “A complementary study on novel PdAuCo catalysts: Synthesis, characterization, direct formic acid fuel cell application, and exergy analysis”, International Journal of Hydrogen Energy, 43(48), (2018), 21886-21898.
  • [7]. Baronia R., Goel J., Baijnath, Kataria V., Basu S., Singhal S.K., “Electro-oxidation of ethylene glycol on Pt-Co metal synergy for direct ethylene glycol fuel cells: Reduced graphene oxide imparting a notable surface of action”, International Journal of Hydrogen Energy, 44(20), (2019), 10023-10032.
  • [8]. Ulas B., Caglar A., Kivrak H., “Determination of optimum Pd:Ni ratio for PdxNi100-x/CNTs formic acid electrooxidation catalysts synthesized via sodium borohydride reduction method”, International Journal of Energy Research, 43(8), (2019), 3436-3445.
  • [9]. Qi Z.G., Kaufman A., “Performance of 2-propanol in direct-oxidation fuel cells”, Journal of Power Sources, 112(1), (2002), 121-129.
  • [10]. Serov A., Martinez U., Falase A., Atanassov P., “Highly active Pd-Cu catalysts for electrooxidation of 2-propanol”, Electrochemistry Communications, 22, (2012), 193-196.
  • [11]. Zhou W.Q., Wang C.Y., Xu J.K., Du Y.K., Yang P., “Enhanced electrocatalytic performance for isopropanol oxidation on Pd-Au nanoparticles dispersed on poly(p-phenylene) prepared from biphenyl”, Materials Chemistry and Physics 123(2-3), (2010), 390-395.
  • [12]. Antolini E., Gonzalez E.R., “Alkaline direct alcohol fuel cells”, Journal of Power Sources 195(11), (2010), 3431-3450.
  • [13]. Wang Y., Li L., Hu L., Zhuang L., Lu J.T., Xu B.Q., “A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages”, Electrochemistry Communications, 5(8), (2003), 662-666.
  • [14]. Spendelow J.S., Wieckowski A., “Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media”, Physical Chemistry Chemical Physics, 9(21), (2007) 2654-2675.
  • [15]. Modestov A.D., Tarasevich M.R., Pu H.T., “Study of 2-Propanol, 1-Propanol, and Acetone Electrochemical Oxidation on Pt in Gelled Phosphoric Acid at 170 degrees C”, Electrocatalysis, 7(1), (2016), 42-49.
  • [16]. Spasojevic M., Ribic-Zelenovic L., “Electrooxidation of 1-propanol on the mixture of nanoparticles of Pt and RuO2”, Monatshefte Fur Chemie, 152(5), (2021), 489-496.
  • [17]. Wang D.Y., Liu J.P., Wu Z.Y., Zhang J.H., Su Y.Z., Liu Z.L., Xu C., “Electrooxidation of Methanol, Ethanol and 1-Propanol on Pd Electrode in Alkaline Medium”, International Journal of Electrochemical Science, 4(12), (2009), 1672-1678.
  • [18]. Yi Q.F., Chu H., Chen Q.H., Yang Z., Liu X.P., “High Performance Pd, PdNi, PdSn and PdSnNi Nanocatalysts Supported on Carbon Nanotubes for Electrooxidation of C2-C4 Alcohols”, Electroanalysis, 27(2), (2015), 388-397.
  • [19]. Etesami M., Mohamed N., “A comparative electrooxidation study on simply prepared nanoparticles in acidic and alkaline media”, Chemija, 23(3), (2012), 171-179.
  • [20]. Yu E.H., Krewer U., Scott K., “Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells”, Energies, 3(8), (2010), 1499-1528.
  • [21]. Chiu W.T., Chiu Y.H., Hsieh P.Y., Chang T.F.M., Sone M., Hsu Y.J., Tixier-Mita A., Toshiyoshi H., “Nano-Au Catalysts Modified with TiO2: Enhancement of Electrocatalytic Activity for 1-Propanol Oxidation in Alkaline Media”, Journal of the Electrochemical Society, 166(12), (2019) F760-F767.
  • [22]. Jafarian M., Mirzapoor A., Danaee I., Shahnazi S.A.A., Gobal F., “A comparative study of the electrooxidation of C1 to C3 aliphatic alcohols on Ni modified graphite electrode”, Science China- Chemistry, 55(9), (2012), 1819-1824.
  • [23]. King W.D., Corn J.D., Murphy O.J., Boxall D.L., Kenik E.A., Kwiatkowski K.C., Stock S.R., Lukehart C.M., “Pt-Ru and Pt-Ru-P/carbon nanocomposites: Synthesis, characterization, and unexpected performance as direct methanol fuel cell (DMFC) anode catalysts”, Journal of Physical Chemistry B, 107(23), (2003), 5467-5474.
  • [24]. Liu J.L., Lai L.F., Sahoo N.G., Zhou W.J., Shen Z.X., Chan S.H., “Carbon Nanotube-Based Materials for Fuel Cell Applications”, Australian Journal of Chemistry, 65(9), (2012), 1213-1222.
  • [25]. Ma M., You S.J., Gong X.B., Dai Y., Zou J.L., Fu H.G., “Silver/iron oxide/graphitic carbon composites as bacteriostatic catalysts for enhancing oxygen reduction in microbial fuel cells”, Journal of Power Sources, 283, (2015), 74-83.
  • [26]. Kim J.H., Choi S.M., Nam S.H., Seo M.H., Choi S.H., Kim W.B., “Influence of Sn content on PtSn/C catalysts for electrooxidation of C-1-C-3 alcohols: Synthesis, characterization, and electrocatalytic activity”, Applied Catalysis B-Environmental, 82(1-2), (2008), 89-102.
  • [27]. Spasojevic M., Markovic D., Ribic-Zelenovic L., “Electrooxidation of 2-propanol on the mixture of nanoparticles of Pt and RuO2 supported on Ti”, Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics, 235(12), (2021), 1573-1588.
  • [28]. Lim E.J., Kim Y., Choi S.M., Lee S., Noh Y., Kim W.B., “Binary PdM catalysts (M = Ru, Sn, or Ir) over a reduced graphene oxide support for electro-oxidation of primary alcohols (methanol, ethanol, 1- propanol) under alkaline conditions”, Journal of Materials Chemistry A, 3(10), (2015), 5491-5500.
  • [29]. Rodrigues I.A., Bergamaski K., Nart F.C., “Probing n-propanol electrochemical oxidation on bimetallic PtRh codeposited electrodes” Journal of the Electrochemical Society, 150(2), (2003), E89- E94.
  • [30]. Funo S., Sato F., Cai Z.W., Chang G., He Y.B., Oyama M., “Codeposition of Platinum and Gold on Nickel Wire Electrodes via Galvanic Replacement Reactions for Electrocatalytic Oxidation of Alcohols”, Acs Omega, 6(28), (2021), 18395-18403.
  • [31]. Schwartz I., Jonke A.P., Josowicz M., Janata J., “Polyaniline-Supported Atomic Gold Electrodes: Comparison with Macro Electrodes”, Catalysis Letters, 142(11), (2012), 1344-1351.
  • [32]. Ulas B., Alpaslan D., Yilmaz Y., Dudu T.E., Er O.F., Kivrak H., “Disentangling the enhanced catalytic activity on Ga modified Ru surfaces for sodium borohydride electrooxidation”, Surfaces and Interfaces 23, (2021), 100999.
  • [33]. Kivrak H., Alal O., Atbas D., “Efficient and rapid microwave-assisted route to synthesize Pt-MnOx hydrogen peroxide sensor”, Electrochimica Acta, 176, (2015), 497-503.
  • [34]. Caglar A., Aldemir A., Kivrak H., “Alcohol electrooxidation study on carbon nanotube supported monometallic, Pt, Bi, and Ru catalysts”, Fullerenes Nanotubes and Carbon Nanostructures, 26(12), (2018), 863-870.
  • [35]. Ozok O., Kavak E., Er O.F., Kivrak H., Kivrak A., “Novel benzothiophene based catalyst with enhanced activity for glucose electrooxidation”, International Journal of Hydrogen Energy, 45(53), (2020), 28706-28715.
  • [36]. Caglar A., Cogenli M.S., Yurtcan A.B., Alal O., Kivrak H., “Remarkable activity of a ZnPdPt anode catalyst: Synthesis, characterization, and formic acid fuel cell performance”, Journal of Physics and Chemistry of Solids, 156, (2021), 110163.
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Şefika Kaya 0000-0003-3556-6461

Project Number FHD-2022-2346
Early Pub Date December 31, 2022
Publication Date December 31, 2022
Published in Issue Year 2022 Volume: 10 Issue: 2

Cite

APA Kaya, Ş. (2022). Development and application of bimetallic catalysts supported carbon nanotube for 1-propanol electrooxidation. MANAS Journal of Engineering, 10(2), 138-144. https://doi.org/10.51354/mjen.1200536
AMA Kaya Ş. Development and application of bimetallic catalysts supported carbon nanotube for 1-propanol electrooxidation. MJEN. December 2022;10(2):138-144. doi:10.51354/mjen.1200536
Chicago Kaya, Şefika. “Development and Application of Bimetallic Catalysts Supported Carbon Nanotube for 1-Propanol Electrooxidation”. MANAS Journal of Engineering 10, no. 2 (December 2022): 138-44. https://doi.org/10.51354/mjen.1200536.
EndNote Kaya Ş (December 1, 2022) Development and application of bimetallic catalysts supported carbon nanotube for 1-propanol electrooxidation. MANAS Journal of Engineering 10 2 138–144.
IEEE Ş. Kaya, “Development and application of bimetallic catalysts supported carbon nanotube for 1-propanol electrooxidation”, MJEN, vol. 10, no. 2, pp. 138–144, 2022, doi: 10.51354/mjen.1200536.
ISNAD Kaya, Şefika. “Development and Application of Bimetallic Catalysts Supported Carbon Nanotube for 1-Propanol Electrooxidation”. MANAS Journal of Engineering 10/2 (December 2022), 138-144. https://doi.org/10.51354/mjen.1200536.
JAMA Kaya Ş. Development and application of bimetallic catalysts supported carbon nanotube for 1-propanol electrooxidation. MJEN. 2022;10:138–144.
MLA Kaya, Şefika. “Development and Application of Bimetallic Catalysts Supported Carbon Nanotube for 1-Propanol Electrooxidation”. MANAS Journal of Engineering, vol. 10, no. 2, 2022, pp. 138-44, doi:10.51354/mjen.1200536.
Vancouver Kaya Ş. Development and application of bimetallic catalysts supported carbon nanotube for 1-propanol electrooxidation. MJEN. 2022;10(2):138-44.

Manas Journal of Engineering 

16155