Year 2023,
Volume: 11 Issue: 1, 124 - 135, 01.07.2023
Ömer Er
,
Duygu Alpaslan
,
Tuba Erşen Dudu
,
Hilal Demir Kıvrak
References
- Kulasingam V., Diamandis EP., Strategies for discovering novel cancer biomarkers through utilization of emerging technologies, Nature clinical practice Oncology, 5, (2008), 588-99.
- Hayes D.F., Bast R.C., Desch C.E., Fritsche Jr.H., Kemeny N.E., Jessup J.M., Tumor marker utility grading system: a
framework to evaluate clinical utility of tumor markers, Journal of the National Cancer Institute, 88, (1996),
1456-66.
- Duffy M., Clinical uses of tumor markers: a critical review, Critical reviews in clinical laboratory sciences, 38,
(2001), 225-62.
- Duffy M.J., Tumor markers in clinical practice: a review focusing on common solid cancers, Medical Principles
and Practice, 22, (2013), 4-11.
- Chikkaveeraiah B.V., Bhirde A.A., Morgan N.Y., Eden H.S., Chen X., Electrochemical immunosensors for detection
of cancer protein biomarkers, ACS nano, 6, (2012), 6546-61.
- Wulfkuhle J.D., Liotta L.A., Petricoin E.F., Proteomic applications for the early detection of cancer, Nature
reviews cancer, 3, (2003), 267-75.
- Kingsmore S.F., Multiplexed protein measurement: technologies and applications of protein and antibody
arrays, Nature reviews Drug discovery, 5, (2006), 310-21.
- Reid B.M., Permuth J.B., Sellers T.A., Epidemiology of ovarian cancer: a review, Cancer biology & medicine, 14,
(2017), 9.
- Majd S.M., Salimi A., Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on
carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film, Analytica
chimica acta, 1000, (2018), 273-82.
- Diaconu I., Cristea C., Hârceagă V., Marrazza G., Berindan-Neagoe I., Săndulescu R., Electrochemical
immunosensors in breast and ovarian cancer, Clinica Chimica Acta, 425, (2013), 128-38.
- Lahoud R., O'Shea A., El-Mouhayyar C., Atre I., Eurboonyanun K., Harisinghani M., Tumour markers and their
utility in imaging of abdominal and pelvic malignancies, Clinical Radiology, 76, (2020), 99-107.
- Wu S., Xu K., Chen G., Zhang J., Liu Z., Xie X., Identification of serum biomarkers for ovarian cancer using MALDI–
TOF-MS combined with magnetic beads, International journal of clinical oncology, 17, (2012), 89-95.
- Lamberti I., Scarano S., Esposito C.L., Antoccia A., Antonini G., Tanzarella C., Franciscis V.D., Minunni M., In vitro
selection of RNA aptamers against CA125 tumor marker in ovarian cancer and its study by optical biosensing,
Methods, 97, (2016), 58-68.
- Chakkarapani S.K., Zhang P., Ahn S., Kang S.H., Total internal reflection plasmonic scattering-based
fluorescence-free nanoimmunosensor probe for ultra-sensitive detection of cancer antigen 125, Biosensors
and Bioelectronics, 81, (2016), 23-31.
- Zhao Y., Zheng Y., Zhao C., You J., Qu F., Hollow PDA-Au nanoparticles-enabled signal amplification for
sensitive nonenzymatic colorimetric immunodetection of carbohydrate antigen 125, Biosensors and
Bioelectronics, 71, (2015), 200-6.
- Soper J.T., Hunter V.J., Daly L., Tanner M., Creasman W.T., Bast Jr.RC., Preoperative serum tumor-associated
antigen levels in women with pelvic masses, Obstetrics and gynecology, 75, (1990), 249-54.
- Xu Q., Davis J.J., The diagnostic utility of electrochemical impedance, Electroanalysis, 26, (2014), 1249-58.
- Bhalla V., Carrara S., Sharma P., Nangia Y., Suri C.R., Gold nanoparticles mediated label-free capacitance
detection of cardiac troponin I, Sensors and Actuators B: Chemical, 161, (2012), 761-8.
- Wang Y., Zhang Z., Jain V., Yi J., Mueller S., Sokolov J., Liu Z., Levon K., Rigas B., Rafailovich M.H., Potentiometric
sensors based on surface molecular imprinting: Detection of cancer biomarkers and viruses, Sensors and
Actuators B: Chemical, 146, (2010), 381-387.
- Li T., Shu B., Jiang B., Ding L., Qi H., Yang M., Qu F., Ultrasensitive multiplexed protein biomarker detection based
on electrochemical tag incorporated polystyrene spheres as label, Sensors and Actuators B: Chemical, 186,
(2013), 768-73.
- Kivrak H., Alal O., Atbas D., Efficient and rapid microwave-assisted route to synthesize Pt-MnOx hydrogen
peroxide sensor, Electrochimica acta, 176, (2015), 497-503.
- Kazıcı H.Ç., Caglar A., Aydogmus T., Aktas N., Kivrak H., Microstructured prealloyed Titanium-Nickel powder as
a novel nonenzymatic hydrogen peroxide sensor, Journal of colloid and interface science, 530,(2018), 353-60.
- Er O.F., Alpaslan D., Dudu T.E., Aktas N., Kivrak H., Novel Cacao oil-based organo-hydrogels to detect
carcinoma antigen 125 in serum medium; synthesis, characterization, and electrochemical measurements,
Materials Chemistry and Physics, 292, (2022), 126795.
- Bangar M.A., Shirale D.J., Chen W., Myung N.V., Mulchandani A., Single conducting polymer nanowire
chemiresistive label-free immunosensor for cancer biomarker, Analytical chemistry, 81, (2009), 2168-75.
- Chen S., Yuan R., Chai Y., Xu Y., Min L., Li N., A new antibody immobilization technique based on organic
polymers protected Prussian blue nanoparticles and gold colloidal nanoparticles for amperometric
immunosensors, Sensors and Actuators B: Chemical, 135, (2008), 236-44.
- Bahavarnia F., Saadati A., Hassanpour S., Hasanzadeh M., Shadjou N., Hassanzadeh A., Paper based
immunosensing of ovarian cancer tumor protein CA 125 using novel nano-ink: a new platform for efficient
diagnosis of cancer and biomedical analysis using microfluidic paper-based analytical devices (μPAD),
International journal of biological macromolecules, 138, (2019), 744-54.
- Wu L., Yan F., Ju H., An amperometric immunosensor for separation-free immunoassay of CA125 based on its
covalent immobilization coupled with thionine on carbon nanofiber, Journal of immunological methods, 322,
(2007), 12-9.
- Li H., Qin J., Li M., Li C., Xu S., Qian L., Yang B., Gold-nanoparticle-decorated boron-doped graphene/BDD
electrode for tumor marker sensor, Sensors and Actuators B: Chemical, 302, (2020), 127209.
- Er O.F., Kivrak H., Ozok O., Çelik S., Kivrak A., A novel electrochemical sensor for monitoring ovarian cancer
tumor protein CA 125 on benzothiophene derivative based electrodes, Journal of Electroanalytical Chemistry,
904, (2021), 115854.
- Er O.F., Kivrak H., Ozok O., Kivrak A., Novel 5-(2-phenylbenzo [b] thiophen-3-yl) furan-2-carbaldehyde based
ovarian cancer carbohydrate antigen 125 electrochemical sensor, Materials Chemistry and Physics, 291,
(2022), 126560.
- Kivrak H., Er O.F., Ozok O., Celik S., Kivrak A., Synthesis and characterization of 4-(2-(4-methoxyphenyl) benzo
[b] thiophen-3-yl) benzaldehyde for carbohydrate antigen 125 electrochemical detection and molecular
docking modeling, Materials Chemistry and Physics, 281, (2022), 125951.
- Er O.F., Kivrak H., Ozok O., Kivrak A., Superior and Novel Carbohydrate Antigen 125 Electrochemical Sensor
Based on 4-(2-(Naphthalen-1-Yl) benzo [b] thiophen-3-Yl) benzaldehyde, Available at SSRN, (2021), 3863113.
- Hasanzadeh M., Sahmani R., Solhi E., Mokhtarzadeh A., Shadjou N., Mahboob S., Ultrasensitive immunoassay of
carcinoma antigen 125 in untreated human plasma samples using gold nanoparticles with flower like
morphology: a new platform in early stage diagnosis of ovarian cancer and efficient management,
International journal of biological macromolecules, 119, (2018), 913-25.
- Zheng Y., Wang H., Ma Z., A nanocomposite containing Prussian Blue, platinum nanoparticles and polyaniline
for multi-amplification of the signal of voltammetric immunosensors: highly sensitive detection of carcinoma
antigen 125, Microchimica Acta, 184, (2017), 4269-77.
- Tang D., Yuan R., Chai Y., Electrochemical immuno-bioanalysis for carcinoma antigen 125 based on thionine
and gold nanoparticles-modified carbon paste interface, Analytica chimica acta, 564, (2006), 158-65.
- Rebelo T.S., Costa R., Brandão A.T., Silva A.F., Sales M.G.F., Pereira C.M., Molecularly imprinted polymer SPE
sensor for analysis of CA-125 on serum, Analytica chimica acta, 1082, (2019), 126-35.
- Cui Z., Wu D., Zhang Y., Ma H., Li H., Du B., Wei Q., Ju H., Ultrasensitive electrochemical immunosensors for
multiplexed determination using mesoporous platinum nanoparticles as nonenzymatic labels, Analytica
chimica acta, 807, (2014), 44-50.
- Ren X., Wang H., Wu D., Fan D., Zhang Y., Du B., Wei Q., Ultrasensitive immunoassay for CA125 detection using
acid site compound as signal and enhancer, Talanta, 144, (2015), 535-41.
- Jafari M., Hasanzadeh M., Solhi E., Hassanpour S., Shadjou N., Mokhtarzadeh A., Jouyban A., Mahboob S.,
Ultrasensitive bioassay of epitope of Mucin-16 protein (CA 125) in human plasma samples using a novel
immunoassay based on silver conductive nano-ink: A new platform in early stage diagnosis of ovarian
cancer and efficient management, International journal of biological macromolecules, 126, (2019), 1255-65.
- Torati S.R., Kasturi K.C., Lim B., Kim C., Hierarchical gold nanostructures modified electrode for electrochemical
detection of cancer antigen CA125, Sensors and Actuators B: Chemical, 243, (2017), 64-71.
- Biswas S., Lan Q., Xie Y., Sun X., Wang Y., Label-Free Electrochemical Immunosensor for Ultrasensitive Detection
of Carbohydrate Antigen 125 Based on Antibody-Immobilized Biocompatible MOF-808/CNT, ACS Applied
Materials & Interfaces, 13, (2021), 3295-302.
- Gasparotto G., Costa J.P.C., Costa P.I., Zaghete M.A., Mazon T., Electrochemical immunosensor based on ZnO
nanorods-Au nanoparticles nanohybrids for ovarian cancer antigen CA-125 detection, Materials Science and
Engineering: C, 76, (2017), 1240-7.
- Mishra S.B., Mishra A.K., Polymeric hydrogels: A review of recent developments, Polymeric hydrogels as smart
biomaterials, (2016), 1-17.
- Dudu T.E., Alpaslan D., Aktas N., Application of Poly (Agar-Co-Glycerol-Co-Sweet Almond Oil) Based Organo-
Hydrogels as a Drug Delivery Material, Journal of Polymers and the Environment, 30, (2021), 1-11.
- Sahiner N., Alpaslan D., Metal‐ion‐containing ionic liquid hydrogels and their application to hydrogen
production, Journal of Applied Polymer Science, 131, (2014), 40183.
- Vázquez‐González M., Willner I., Stimuli‐Responsive Biomolecule‐Based Hydrogels and Their Applications,
Angewandte Chemie International Edition, 59, (2020), 15342-77.
- Alpaslan D., Dudu T.E., Aktaş N., Synthesis and characterization of novel organo-hydrogel based agar, glycerol
and peppermint oil as a natural drug carrier/release material, Materials Science and Engineering: C, 118,
(2021), 111534.
- Alpaslan D., Dudu T.E., Aktas N., Evaluation of poly (agar-co-glycerol-co-castor oil) organo-hydrogel as a
controlled release system carrier support material, Polymer Bulletin, 79, (2021), 1-22.
- Helgeson M.E., Moran S.E., An H.Z., Doyle P.S., Mesoporous organohydrogels from thermogelling
photocrosslinkable nanoemulsions, Nature materials, 11, (2012), 344-52.
- Zohri A-N., Abdel-Gawad K., Saber S., Antibacterial, antidermatophytic and antitoxigenic activities of onion
(Allium cepa L.) oil, Microbiological research, 150, (1995), 167-72.
- Lanzotti V., The analysis of onion and garlic, Journal of chromatography A, 1112, (2006), 3-22.
- [52]Taleat Z., Ravalli A., Mazloum‐Ardakani M., Marrazza G., CA 125 immunosensor based on poly‐anthranilic
acid modified screen‐printed electrodes, Electroanalysis, 25, (2013), 269-77.
- Wu L., Chen J., Du D., Ju H., Electrochemical immunoassay for CA125 based on cellulose acetate stabilized
antigen/colloidal gold nanoparticles membrane, Electrochimica Acta, 51, (2006), 1208-14.
- Ciucci F., Modeling electrochemical impedance spectroscopy, Current Opinion in Electrochemistry, 13, (2019),
132-9.
- ER Ö.F., Cavak A., Aldemir A., Kivrak H.D., Investigation of hydrazine electrooxidation performance of carbon
nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts, MANAS Journal of
Engineering, 8, (2020), 90-98.
- Chang B-Y., Park S-M., Electrochemical impedance spectroscopy, Annual Review of Analytical Chemistryi, 3,
(2010), 207-29.
- Er O.F., Ulas B., Ozok O., Kivrak A., Kivrak H., Design of 2-(4-(2-pentyllbenzo [b] thiophen-3-yl) benzylidene)
malononitrile based remarkable organic catalyst towards hydrazine electrooxidation, Journal of
Electroanalytical Chemistry, 888, (2021), 115218.
- Kivrak H., Selçuk K., Er O.F., Aktas N., Nanostructured electrochemical cysteine sensor based on carbon
nanotube supported Ru, Pd, and Pt catalysts, Materials Chemistry and Physics, 267, (2021), 124689.
- ER Ö.F., Ulaş B., Kivrak H.D., Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation:
the effect of bismuth promotion and optimization via response surface methodology, Turkish Journal of
Chemistry, 45, (2021), 1173-88.
- Kaya S., Yilmaz Y., Er O.F., Alpaslan D., Ulas B., Dudu T.E., Kivrak H., Highly Active RuPd Bimetallic Catalysts for
Sodium Borohydride Electrooxidation and Hydrolysis, Journal of Electronic Materials, 51, (2021), 403-411.
Novel CA-125 antigen determination in serum by electrochemical methods with onion oil-containing organo-hydrogels
Year 2023,
Volume: 11 Issue: 1, 124 - 135, 01.07.2023
Ömer Er
,
Duygu Alpaslan
,
Tuba Erşen Dudu
,
Hilal Demir Kıvrak
Abstract
CA-125 antigen is a glycoprotein that can be found at distinct levels in blood samples according to the phases of ovarian cancer. Herein, we designed novel onion oil-organo-hydrogels (OOHGs) to detect CA-125 antigen at high sensitivity and selectively via electrochemical methods. OOHGs produced are characterized by swelling analysis and Fourier Transform Infrared Spectroscopy (FT-IR). Cyclic voltammetry (CV), Electro impedance spectroscopy (EIS), and Differential pulse voltammetry (DPV) techniques in the potentiostat triple electron system are used for performing the electrochemical measurements. Performances and electron transfer resistances of OOHGs and OOHG+CA-125s are researched via CV and EIS, and the sensitivity properties such as LOD and LOQ of the sensor are determined via DPV. OOHG-2 among OOHGs produced exhibited the highest performance with 0.8151 mA/cm2 (815.1 A/cm2) value at determining CA-125 in serum medium. Moreover, this electrode is found that exhibit a wide linear range like a 1-500 ng/mL concentration range. The limit of quantification (LOQ) and the lowest of detection (LOD) for the OOHG-2 electrode are calculated as 0.531 U/mL and 0.265 U/mL (S/N=3), respectively. Further, the CA-125 antigen of the OOHG-2 electrode in interference results is observed that can be detected with high selectivity. With these results, it can be noted that the OOHG-2 electrode holds great hope for detection ovarian cancer by electrochemical methods.
References
- Kulasingam V., Diamandis EP., Strategies for discovering novel cancer biomarkers through utilization of emerging technologies, Nature clinical practice Oncology, 5, (2008), 588-99.
- Hayes D.F., Bast R.C., Desch C.E., Fritsche Jr.H., Kemeny N.E., Jessup J.M., Tumor marker utility grading system: a
framework to evaluate clinical utility of tumor markers, Journal of the National Cancer Institute, 88, (1996),
1456-66.
- Duffy M., Clinical uses of tumor markers: a critical review, Critical reviews in clinical laboratory sciences, 38,
(2001), 225-62.
- Duffy M.J., Tumor markers in clinical practice: a review focusing on common solid cancers, Medical Principles
and Practice, 22, (2013), 4-11.
- Chikkaveeraiah B.V., Bhirde A.A., Morgan N.Y., Eden H.S., Chen X., Electrochemical immunosensors for detection
of cancer protein biomarkers, ACS nano, 6, (2012), 6546-61.
- Wulfkuhle J.D., Liotta L.A., Petricoin E.F., Proteomic applications for the early detection of cancer, Nature
reviews cancer, 3, (2003), 267-75.
- Kingsmore S.F., Multiplexed protein measurement: technologies and applications of protein and antibody
arrays, Nature reviews Drug discovery, 5, (2006), 310-21.
- Reid B.M., Permuth J.B., Sellers T.A., Epidemiology of ovarian cancer: a review, Cancer biology & medicine, 14,
(2017), 9.
- Majd S.M., Salimi A., Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on
carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film, Analytica
chimica acta, 1000, (2018), 273-82.
- Diaconu I., Cristea C., Hârceagă V., Marrazza G., Berindan-Neagoe I., Săndulescu R., Electrochemical
immunosensors in breast and ovarian cancer, Clinica Chimica Acta, 425, (2013), 128-38.
- Lahoud R., O'Shea A., El-Mouhayyar C., Atre I., Eurboonyanun K., Harisinghani M., Tumour markers and their
utility in imaging of abdominal and pelvic malignancies, Clinical Radiology, 76, (2020), 99-107.
- Wu S., Xu K., Chen G., Zhang J., Liu Z., Xie X., Identification of serum biomarkers for ovarian cancer using MALDI–
TOF-MS combined with magnetic beads, International journal of clinical oncology, 17, (2012), 89-95.
- Lamberti I., Scarano S., Esposito C.L., Antoccia A., Antonini G., Tanzarella C., Franciscis V.D., Minunni M., In vitro
selection of RNA aptamers against CA125 tumor marker in ovarian cancer and its study by optical biosensing,
Methods, 97, (2016), 58-68.
- Chakkarapani S.K., Zhang P., Ahn S., Kang S.H., Total internal reflection plasmonic scattering-based
fluorescence-free nanoimmunosensor probe for ultra-sensitive detection of cancer antigen 125, Biosensors
and Bioelectronics, 81, (2016), 23-31.
- Zhao Y., Zheng Y., Zhao C., You J., Qu F., Hollow PDA-Au nanoparticles-enabled signal amplification for
sensitive nonenzymatic colorimetric immunodetection of carbohydrate antigen 125, Biosensors and
Bioelectronics, 71, (2015), 200-6.
- Soper J.T., Hunter V.J., Daly L., Tanner M., Creasman W.T., Bast Jr.RC., Preoperative serum tumor-associated
antigen levels in women with pelvic masses, Obstetrics and gynecology, 75, (1990), 249-54.
- Xu Q., Davis J.J., The diagnostic utility of electrochemical impedance, Electroanalysis, 26, (2014), 1249-58.
- Bhalla V., Carrara S., Sharma P., Nangia Y., Suri C.R., Gold nanoparticles mediated label-free capacitance
detection of cardiac troponin I, Sensors and Actuators B: Chemical, 161, (2012), 761-8.
- Wang Y., Zhang Z., Jain V., Yi J., Mueller S., Sokolov J., Liu Z., Levon K., Rigas B., Rafailovich M.H., Potentiometric
sensors based on surface molecular imprinting: Detection of cancer biomarkers and viruses, Sensors and
Actuators B: Chemical, 146, (2010), 381-387.
- Li T., Shu B., Jiang B., Ding L., Qi H., Yang M., Qu F., Ultrasensitive multiplexed protein biomarker detection based
on electrochemical tag incorporated polystyrene spheres as label, Sensors and Actuators B: Chemical, 186,
(2013), 768-73.
- Kivrak H., Alal O., Atbas D., Efficient and rapid microwave-assisted route to synthesize Pt-MnOx hydrogen
peroxide sensor, Electrochimica acta, 176, (2015), 497-503.
- Kazıcı H.Ç., Caglar A., Aydogmus T., Aktas N., Kivrak H., Microstructured prealloyed Titanium-Nickel powder as
a novel nonenzymatic hydrogen peroxide sensor, Journal of colloid and interface science, 530,(2018), 353-60.
- Er O.F., Alpaslan D., Dudu T.E., Aktas N., Kivrak H., Novel Cacao oil-based organo-hydrogels to detect
carcinoma antigen 125 in serum medium; synthesis, characterization, and electrochemical measurements,
Materials Chemistry and Physics, 292, (2022), 126795.
- Bangar M.A., Shirale D.J., Chen W., Myung N.V., Mulchandani A., Single conducting polymer nanowire
chemiresistive label-free immunosensor for cancer biomarker, Analytical chemistry, 81, (2009), 2168-75.
- Chen S., Yuan R., Chai Y., Xu Y., Min L., Li N., A new antibody immobilization technique based on organic
polymers protected Prussian blue nanoparticles and gold colloidal nanoparticles for amperometric
immunosensors, Sensors and Actuators B: Chemical, 135, (2008), 236-44.
- Bahavarnia F., Saadati A., Hassanpour S., Hasanzadeh M., Shadjou N., Hassanzadeh A., Paper based
immunosensing of ovarian cancer tumor protein CA 125 using novel nano-ink: a new platform for efficient
diagnosis of cancer and biomedical analysis using microfluidic paper-based analytical devices (μPAD),
International journal of biological macromolecules, 138, (2019), 744-54.
- Wu L., Yan F., Ju H., An amperometric immunosensor for separation-free immunoassay of CA125 based on its
covalent immobilization coupled with thionine on carbon nanofiber, Journal of immunological methods, 322,
(2007), 12-9.
- Li H., Qin J., Li M., Li C., Xu S., Qian L., Yang B., Gold-nanoparticle-decorated boron-doped graphene/BDD
electrode for tumor marker sensor, Sensors and Actuators B: Chemical, 302, (2020), 127209.
- Er O.F., Kivrak H., Ozok O., Çelik S., Kivrak A., A novel electrochemical sensor for monitoring ovarian cancer
tumor protein CA 125 on benzothiophene derivative based electrodes, Journal of Electroanalytical Chemistry,
904, (2021), 115854.
- Er O.F., Kivrak H., Ozok O., Kivrak A., Novel 5-(2-phenylbenzo [b] thiophen-3-yl) furan-2-carbaldehyde based
ovarian cancer carbohydrate antigen 125 electrochemical sensor, Materials Chemistry and Physics, 291,
(2022), 126560.
- Kivrak H., Er O.F., Ozok O., Celik S., Kivrak A., Synthesis and characterization of 4-(2-(4-methoxyphenyl) benzo
[b] thiophen-3-yl) benzaldehyde for carbohydrate antigen 125 electrochemical detection and molecular
docking modeling, Materials Chemistry and Physics, 281, (2022), 125951.
- Er O.F., Kivrak H., Ozok O., Kivrak A., Superior and Novel Carbohydrate Antigen 125 Electrochemical Sensor
Based on 4-(2-(Naphthalen-1-Yl) benzo [b] thiophen-3-Yl) benzaldehyde, Available at SSRN, (2021), 3863113.
- Hasanzadeh M., Sahmani R., Solhi E., Mokhtarzadeh A., Shadjou N., Mahboob S., Ultrasensitive immunoassay of
carcinoma antigen 125 in untreated human plasma samples using gold nanoparticles with flower like
morphology: a new platform in early stage diagnosis of ovarian cancer and efficient management,
International journal of biological macromolecules, 119, (2018), 913-25.
- Zheng Y., Wang H., Ma Z., A nanocomposite containing Prussian Blue, platinum nanoparticles and polyaniline
for multi-amplification of the signal of voltammetric immunosensors: highly sensitive detection of carcinoma
antigen 125, Microchimica Acta, 184, (2017), 4269-77.
- Tang D., Yuan R., Chai Y., Electrochemical immuno-bioanalysis for carcinoma antigen 125 based on thionine
and gold nanoparticles-modified carbon paste interface, Analytica chimica acta, 564, (2006), 158-65.
- Rebelo T.S., Costa R., Brandão A.T., Silva A.F., Sales M.G.F., Pereira C.M., Molecularly imprinted polymer SPE
sensor for analysis of CA-125 on serum, Analytica chimica acta, 1082, (2019), 126-35.
- Cui Z., Wu D., Zhang Y., Ma H., Li H., Du B., Wei Q., Ju H., Ultrasensitive electrochemical immunosensors for
multiplexed determination using mesoporous platinum nanoparticles as nonenzymatic labels, Analytica
chimica acta, 807, (2014), 44-50.
- Ren X., Wang H., Wu D., Fan D., Zhang Y., Du B., Wei Q., Ultrasensitive immunoassay for CA125 detection using
acid site compound as signal and enhancer, Talanta, 144, (2015), 535-41.
- Jafari M., Hasanzadeh M., Solhi E., Hassanpour S., Shadjou N., Mokhtarzadeh A., Jouyban A., Mahboob S.,
Ultrasensitive bioassay of epitope of Mucin-16 protein (CA 125) in human plasma samples using a novel
immunoassay based on silver conductive nano-ink: A new platform in early stage diagnosis of ovarian
cancer and efficient management, International journal of biological macromolecules, 126, (2019), 1255-65.
- Torati S.R., Kasturi K.C., Lim B., Kim C., Hierarchical gold nanostructures modified electrode for electrochemical
detection of cancer antigen CA125, Sensors and Actuators B: Chemical, 243, (2017), 64-71.
- Biswas S., Lan Q., Xie Y., Sun X., Wang Y., Label-Free Electrochemical Immunosensor for Ultrasensitive Detection
of Carbohydrate Antigen 125 Based on Antibody-Immobilized Biocompatible MOF-808/CNT, ACS Applied
Materials & Interfaces, 13, (2021), 3295-302.
- Gasparotto G., Costa J.P.C., Costa P.I., Zaghete M.A., Mazon T., Electrochemical immunosensor based on ZnO
nanorods-Au nanoparticles nanohybrids for ovarian cancer antigen CA-125 detection, Materials Science and
Engineering: C, 76, (2017), 1240-7.
- Mishra S.B., Mishra A.K., Polymeric hydrogels: A review of recent developments, Polymeric hydrogels as smart
biomaterials, (2016), 1-17.
- Dudu T.E., Alpaslan D., Aktas N., Application of Poly (Agar-Co-Glycerol-Co-Sweet Almond Oil) Based Organo-
Hydrogels as a Drug Delivery Material, Journal of Polymers and the Environment, 30, (2021), 1-11.
- Sahiner N., Alpaslan D., Metal‐ion‐containing ionic liquid hydrogels and their application to hydrogen
production, Journal of Applied Polymer Science, 131, (2014), 40183.
- Vázquez‐González M., Willner I., Stimuli‐Responsive Biomolecule‐Based Hydrogels and Their Applications,
Angewandte Chemie International Edition, 59, (2020), 15342-77.
- Alpaslan D., Dudu T.E., Aktaş N., Synthesis and characterization of novel organo-hydrogel based agar, glycerol
and peppermint oil as a natural drug carrier/release material, Materials Science and Engineering: C, 118,
(2021), 111534.
- Alpaslan D., Dudu T.E., Aktas N., Evaluation of poly (agar-co-glycerol-co-castor oil) organo-hydrogel as a
controlled release system carrier support material, Polymer Bulletin, 79, (2021), 1-22.
- Helgeson M.E., Moran S.E., An H.Z., Doyle P.S., Mesoporous organohydrogels from thermogelling
photocrosslinkable nanoemulsions, Nature materials, 11, (2012), 344-52.
- Zohri A-N., Abdel-Gawad K., Saber S., Antibacterial, antidermatophytic and antitoxigenic activities of onion
(Allium cepa L.) oil, Microbiological research, 150, (1995), 167-72.
- Lanzotti V., The analysis of onion and garlic, Journal of chromatography A, 1112, (2006), 3-22.
- [52]Taleat Z., Ravalli A., Mazloum‐Ardakani M., Marrazza G., CA 125 immunosensor based on poly‐anthranilic
acid modified screen‐printed electrodes, Electroanalysis, 25, (2013), 269-77.
- Wu L., Chen J., Du D., Ju H., Electrochemical immunoassay for CA125 based on cellulose acetate stabilized
antigen/colloidal gold nanoparticles membrane, Electrochimica Acta, 51, (2006), 1208-14.
- Ciucci F., Modeling electrochemical impedance spectroscopy, Current Opinion in Electrochemistry, 13, (2019),
132-9.
- ER Ö.F., Cavak A., Aldemir A., Kivrak H.D., Investigation of hydrazine electrooxidation performance of carbon
nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts, MANAS Journal of
Engineering, 8, (2020), 90-98.
- Chang B-Y., Park S-M., Electrochemical impedance spectroscopy, Annual Review of Analytical Chemistryi, 3,
(2010), 207-29.
- Er O.F., Ulas B., Ozok O., Kivrak A., Kivrak H., Design of 2-(4-(2-pentyllbenzo [b] thiophen-3-yl) benzylidene)
malononitrile based remarkable organic catalyst towards hydrazine electrooxidation, Journal of
Electroanalytical Chemistry, 888, (2021), 115218.
- Kivrak H., Selçuk K., Er O.F., Aktas N., Nanostructured electrochemical cysteine sensor based on carbon
nanotube supported Ru, Pd, and Pt catalysts, Materials Chemistry and Physics, 267, (2021), 124689.
- ER Ö.F., Ulaş B., Kivrak H.D., Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation:
the effect of bismuth promotion and optimization via response surface methodology, Turkish Journal of
Chemistry, 45, (2021), 1173-88.
- Kaya S., Yilmaz Y., Er O.F., Alpaslan D., Ulas B., Dudu T.E., Kivrak H., Highly Active RuPd Bimetallic Catalysts for
Sodium Borohydride Electrooxidation and Hydrolysis, Journal of Electronic Materials, 51, (2021), 403-411.