Antibiotic residuals removal via novel fabricated hydrogel from 2-hydroxyethyl methacrylate and sodium methacrylate
Year 2023,
Volume: 11 Issue: 1, 145 - 153, 01.07.2023
Urmat Zholdoshbek Uulu
,
Sinan Akgöl
,
Nahit Aktaş
Abstract
In this study, poly(2-hydroxyethyl-sodium methacrylate) (p(HEMA-SMA)) hydrogels were synthesized as a novel adsorbent to remove antibiotic residues from environmental samples. [p(HEMA-SMA)] co-polymers were synthesized by the free radical photopolymerization method. Synthesized hydrogels were characterized by different methods such as Fourier-transform infrared spectroscopy (FTIR), elemental and scanning electron microscope (SEM), and surface area calculations. The average size surface area of the synthesized hydrogels were 1.515 µm. Penicillin G (Pen. G) was used as the sample antibiotic for the adsorption process. The absorption of the drugs was studied under different environmental conditions. Medium pH, temperature, and hydrogel concentration were varied to achieve the highest absorption. The specific adsorption value (Qmax) of p(HEMA-SMA) copolymers was found 303.03mg/g for Penicillin G at the 0,35 mg/mL of initial Pen. G concentration. In conclusion, we suggest a novel microstructure, selective, low-cost adsorption polymeric material for the removal of Pen. G as the template antibiotic.
Supporting Institution
Kyrgyz-Turkish Manas University
Project Number
0009-0007-2219-8870
References
- Aqda, T. G., Behkami, S., Raoofi, M., & Bagheri, H. (2019). Graphene oxide-starch-based micro-solid phase
extraction of antibiotic residues from milk samples. Journal of Chromatography A, 1591, 7–14.
- Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of
Chemistry, 2017, 1–11.
- Bulut, Y., Gözübenli, N., & Aydın, H. (2007). Equilibrium and kinetics studies for adsorption of direct blue 71 from
aqueous solution by wheat shells. Journal of Hazardous Materials, 144, 300–306pp.
- Congur, G., Senay, H., Turkcan, C., Canavar, E., Erdem, A., & Akgol, S. (2013). Estrone specific molecularly
imprinted polymeric nanospheres: Synthesis, characterization and applications for electrochemical sensor
development. Combinatorial Chemistry & High Throughput Screening, 16(7), 503–510.
- Çorman, M. E., & Akgöl, S. (2012). Preparation of molecular imprinted hydrophobic polymeric nanoparticles
havingstructural memories for lysozyme recognition. Artificial Cells, Blood Substitutes, and Biotechnology,
40(4), 245–255.
- Dincer, S., & Yigittekin, E. S. (2017). Spreading of antibiotic resistance with wastewater. Biological Wastewater
Treatment and Resource
- Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorptionisothermsystems. Chemical
Engineering Journal, 156(1), 2–10.
- Ghose, S., Hubbard, B. B., & Cramer, S. M. (2005). Protein interactions in hydrophobic charge induction
chromatography (HCIC). Biotechnology Progress, 21, 498pp.
- Inanan, T., Tüzmen, N., Akgöl, S., & Denizli, A. (2016). Selective cholesterol adsorption by molecular imprinted
polymeric nanospheres and application to GIMS. International Journal of Biological Macromolecules, 92, 451–
460.
- Inyinbor, A. A., Adekola, F. A., & Olatunji, G. A. (2016). Kinetics, isotherms and thermodynamic modeling of liquid
phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resources and Industry, 15,
14–27.
- Joshi, S. (2002). HPLC separation of antibiotics present in formulated and unformulated samples. Journal of
Pharmaceutical and Biomedical Analysis, 28(5), 795–809.
- Kamranifar, M., Allahresani, A., & Naghizadeh, A. (2019). Synthesis and characterizations of a novel CoFe2O4@
CuS magnetic nanocomposite and investigation of its efficiency for photocatalytic degradation of penicillin G
antibiotic in simulated wastewater. Journal of Hazardous Materials, 366, 545–555.
- Koch, C., Poghossian, A., Schöning, M. J., & Wege, C. (2018). Penicillin detection by tobacco mosaic virus-
assisted colorimetric biosensors. Nanotheranostics, 2(2), 184–196.
- Kraemer, S. A., Ramachandran, A., & Perron, G. G. (2019). Antibiotic pollution in the environment: from microbial
ecology to public policy. Microorganisms, 7(6), 180.
- Kuru, C. İ., Türkcan, C., Uygun, M., Okutucu, B., & Akgöl, S. (2014). Preparation and characterization of silanized
poly(HEMA) nanopolymers for recognition of sugars. Artificial Cells, Nanomedicine, and Biotechnology, 44,
835–841.
- Lingzhi, L., Haojie, G., Dan, G., Hongmei, M., Yang, L., Mengdie, J., Chengkun, Z., & Xiaohui, Z. (2018). The role of
two-component regulatory system in β-lactam antibiotics resistance. Microbiological Research, 215, 126–129.
- Lobanovska, M., & Pilla, G. (2017). Focus: Drug development: Penicillin’s discovery and antibiotic resistance:
Lessons for the future? The Yale Journal of Biology and Medicine, 90(1), 135.
- Malkoç, E. (2006). Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis. Journal of
Hazardous Materials, 137, 899–908pp.
- Moreno-González, D., Rodríguez-Ramírez, R., del Olmo-Iruela, M., & García-Campaña, A. M. (2017). Validation of
a new method based on salting-out assisted liquid-liquid extraction and UHPLC-MS/MS for the determination
of betalactam antibiotics in infant dairy products. Talanta, 167, 493–498.
- Okocha, R. C., Olatoye, I. O., & Adedeji, O. B. (2018). Food safety impacts of antimicrobial use and their residues
in aquaculture. Public Health Reviews, 39(1), 1–22.
- Paulino, A. T., Minasse, F. A. S., Guilherme, M. R., Reis, A. V., Muniz, E. C., & Nozaki, J. (2006). Novel adsorbent
based on silkworm chrysalides for removal of heavy metals from wastewaters. Journal of Colloid and
Interface Science, 301, 479–487pp.
- Pinder, N., Brenner, T., Swoboda, S., Weigand, M. A., & HoppeTichy, T. (2017). Therapeutic drug monitoring of
beta-lactam antibiotics–influence of sample stability on the analysis of piperacillin, meropenem, ceftazidime
and flucloxacillin by HPLC-UV. Journal of Pharmaceutical and Biomedical Analysis, 143, 86–93.
- Samanidou, V., Michaelidou, K., Kabir, A., & Furton, K. G. (2017). Fabric phase sorptive extraction of selected
penicillin antibiotic residues from intact milk followed by high performance liquid chromatography with diode
array detection. Food Chemistry, 224, 131–138.
- Türkmen, D., Bereli, N., Çorman, M. E., Shaikh, H., Akgöl, S., & Denizli, A. (2014). Molecular imprinted magnetic
nanoparticles for controlled delivery of mitomycin C. Artificial Cells, Nanomedicine, and Biotechnology, 42(5),
316–322.
- Willms, I. M., Yuan, J., Penone, C., Goldmann, K., Vogt, J., Wubet, T., Schöning, I., Schrumpf, M., Buscot, F., &
Nacke, H. (2020). Distribution of medically relevant antibiotic resistance genes and Mobile genetic elements in
soils of temperate forests and grasslands varying in land use. Genes, 11(2), 150.
- Yin, J., Meng, Z., Du, M., Liu, C., Song, M., & Wang, H. (2010). Pseudo-template molecularly imprinted polymer for
selective screening of trace β-lactam antibiotics in river and tap water. Journal of Chromatography. A, 33,
5420–5426pp.
Year 2023,
Volume: 11 Issue: 1, 145 - 153, 01.07.2023
Urmat Zholdoshbek Uulu
,
Sinan Akgöl
,
Nahit Aktaş
Project Number
0009-0007-2219-8870
References
- Aqda, T. G., Behkami, S., Raoofi, M., & Bagheri, H. (2019). Graphene oxide-starch-based micro-solid phase
extraction of antibiotic residues from milk samples. Journal of Chromatography A, 1591, 7–14.
- Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of
Chemistry, 2017, 1–11.
- Bulut, Y., Gözübenli, N., & Aydın, H. (2007). Equilibrium and kinetics studies for adsorption of direct blue 71 from
aqueous solution by wheat shells. Journal of Hazardous Materials, 144, 300–306pp.
- Congur, G., Senay, H., Turkcan, C., Canavar, E., Erdem, A., & Akgol, S. (2013). Estrone specific molecularly
imprinted polymeric nanospheres: Synthesis, characterization and applications for electrochemical sensor
development. Combinatorial Chemistry & High Throughput Screening, 16(7), 503–510.
- Çorman, M. E., & Akgöl, S. (2012). Preparation of molecular imprinted hydrophobic polymeric nanoparticles
havingstructural memories for lysozyme recognition. Artificial Cells, Blood Substitutes, and Biotechnology,
40(4), 245–255.
- Dincer, S., & Yigittekin, E. S. (2017). Spreading of antibiotic resistance with wastewater. Biological Wastewater
Treatment and Resource
- Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorptionisothermsystems. Chemical
Engineering Journal, 156(1), 2–10.
- Ghose, S., Hubbard, B. B., & Cramer, S. M. (2005). Protein interactions in hydrophobic charge induction
chromatography (HCIC). Biotechnology Progress, 21, 498pp.
- Inanan, T., Tüzmen, N., Akgöl, S., & Denizli, A. (2016). Selective cholesterol adsorption by molecular imprinted
polymeric nanospheres and application to GIMS. International Journal of Biological Macromolecules, 92, 451–
460.
- Inyinbor, A. A., Adekola, F. A., & Olatunji, G. A. (2016). Kinetics, isotherms and thermodynamic modeling of liquid
phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resources and Industry, 15,
14–27.
- Joshi, S. (2002). HPLC separation of antibiotics present in formulated and unformulated samples. Journal of
Pharmaceutical and Biomedical Analysis, 28(5), 795–809.
- Kamranifar, M., Allahresani, A., & Naghizadeh, A. (2019). Synthesis and characterizations of a novel CoFe2O4@
CuS magnetic nanocomposite and investigation of its efficiency for photocatalytic degradation of penicillin G
antibiotic in simulated wastewater. Journal of Hazardous Materials, 366, 545–555.
- Koch, C., Poghossian, A., Schöning, M. J., & Wege, C. (2018). Penicillin detection by tobacco mosaic virus-
assisted colorimetric biosensors. Nanotheranostics, 2(2), 184–196.
- Kraemer, S. A., Ramachandran, A., & Perron, G. G. (2019). Antibiotic pollution in the environment: from microbial
ecology to public policy. Microorganisms, 7(6), 180.
- Kuru, C. İ., Türkcan, C., Uygun, M., Okutucu, B., & Akgöl, S. (2014). Preparation and characterization of silanized
poly(HEMA) nanopolymers for recognition of sugars. Artificial Cells, Nanomedicine, and Biotechnology, 44,
835–841.
- Lingzhi, L., Haojie, G., Dan, G., Hongmei, M., Yang, L., Mengdie, J., Chengkun, Z., & Xiaohui, Z. (2018). The role of
two-component regulatory system in β-lactam antibiotics resistance. Microbiological Research, 215, 126–129.
- Lobanovska, M., & Pilla, G. (2017). Focus: Drug development: Penicillin’s discovery and antibiotic resistance:
Lessons for the future? The Yale Journal of Biology and Medicine, 90(1), 135.
- Malkoç, E. (2006). Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis. Journal of
Hazardous Materials, 137, 899–908pp.
- Moreno-González, D., Rodríguez-Ramírez, R., del Olmo-Iruela, M., & García-Campaña, A. M. (2017). Validation of
a new method based on salting-out assisted liquid-liquid extraction and UHPLC-MS/MS for the determination
of betalactam antibiotics in infant dairy products. Talanta, 167, 493–498.
- Okocha, R. C., Olatoye, I. O., & Adedeji, O. B. (2018). Food safety impacts of antimicrobial use and their residues
in aquaculture. Public Health Reviews, 39(1), 1–22.
- Paulino, A. T., Minasse, F. A. S., Guilherme, M. R., Reis, A. V., Muniz, E. C., & Nozaki, J. (2006). Novel adsorbent
based on silkworm chrysalides for removal of heavy metals from wastewaters. Journal of Colloid and
Interface Science, 301, 479–487pp.
- Pinder, N., Brenner, T., Swoboda, S., Weigand, M. A., & HoppeTichy, T. (2017). Therapeutic drug monitoring of
beta-lactam antibiotics–influence of sample stability on the analysis of piperacillin, meropenem, ceftazidime
and flucloxacillin by HPLC-UV. Journal of Pharmaceutical and Biomedical Analysis, 143, 86–93.
- Samanidou, V., Michaelidou, K., Kabir, A., & Furton, K. G. (2017). Fabric phase sorptive extraction of selected
penicillin antibiotic residues from intact milk followed by high performance liquid chromatography with diode
array detection. Food Chemistry, 224, 131–138.
- Türkmen, D., Bereli, N., Çorman, M. E., Shaikh, H., Akgöl, S., & Denizli, A. (2014). Molecular imprinted magnetic
nanoparticles for controlled delivery of mitomycin C. Artificial Cells, Nanomedicine, and Biotechnology, 42(5),
316–322.
- Willms, I. M., Yuan, J., Penone, C., Goldmann, K., Vogt, J., Wubet, T., Schöning, I., Schrumpf, M., Buscot, F., &
Nacke, H. (2020). Distribution of medically relevant antibiotic resistance genes and Mobile genetic elements in
soils of temperate forests and grasslands varying in land use. Genes, 11(2), 150.
- Yin, J., Meng, Z., Du, M., Liu, C., Song, M., & Wang, H. (2010). Pseudo-template molecularly imprinted polymer for
selective screening of trace β-lactam antibiotics in river and tap water. Journal of Chromatography. A, 33,
5420–5426pp.