Research Article
BibTex RIS Cite

Year 2019, Volume: 1 Issue: 2, 89 - 95, 30.10.2019
https://izlik.org/JA45UG38FF

Abstract

References

  • [1]F. Albiac and N. J. Kalton, Topics in Banach space theory, Volume 233 of Graduate Texts in Mathematics. Springer, New York, 2006.
  • [2] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, United Kingdom, 2004.
  • [3] D. P. Bertsekas, Convex Analysis and Optimization, Athena Scienti.c, Belmont, MA, 2003.
  • [4] N. Dunford and J. T. Schwartz, Linear operators, Part I. Wiley Classics Library. John Wiley and Sons Inc., New York, 1988.
  • [5] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North Holland, Amsterdam, 1976.
  • [6] I. Ekeland and T. Turnbull, In nite Dimensional Optimization and Convexity, The University of Chicago Press, Chicago, 1983.
  • [7] R. Glowinski, J. L. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities, North Holland, Amsterdam, 1981.
  • [8] M. Grasmair, Minimizers of optimization problems, To appear.
  • [9] A.J. Kurdila and M. Zabarankin., Convex functional analysis, Systems and Control: Foundations and Applications. Birkhauser Verlag, Basel, 2005.
  • [10] J.P. Vial, Strong convexity of set and functions, J. Math. Econom 9 (1982), 187-205.

On Convex Optimization in Hilbert Spaces

Year 2019, Volume: 1 Issue: 2, 89 - 95, 30.10.2019
https://izlik.org/JA45UG38FF

Abstract

In this paper, convex optimization techniques are employed for convex optimization problems in infinite dimensional Hilbert spaces. A first order optimality condition is given. Let  $f : \mathbb{R}^{n}\rightarrow \mathbb{R}$ and let $x\in \mathbb{R}^{n}$ be a local solution to the problem $\min_{x\in \mathbb{R}^{n}} f(x).$ Then $f'(x,d)\geq 0$ for every direction $d\in \mathbb{R}^{n}$  for which $f'(x,d)$ exists. Moreover, Let  $f : \mathbb{R}^{n}\rightarrow \mathbb{R}$ be differentiable at  $x^{*}\in \mathbb{R}^{n}.$ If $x^{*}$ is a local minimum of $f$, then $\nabla f(x^{*}) = 0.$ A simple application involving the Dirichlet problem is also given. Lastly, we have given optimization conditions involving positive semi-definite matrices.

References

  • [1]F. Albiac and N. J. Kalton, Topics in Banach space theory, Volume 233 of Graduate Texts in Mathematics. Springer, New York, 2006.
  • [2] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, United Kingdom, 2004.
  • [3] D. P. Bertsekas, Convex Analysis and Optimization, Athena Scienti.c, Belmont, MA, 2003.
  • [4] N. Dunford and J. T. Schwartz, Linear operators, Part I. Wiley Classics Library. John Wiley and Sons Inc., New York, 1988.
  • [5] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North Holland, Amsterdam, 1976.
  • [6] I. Ekeland and T. Turnbull, In nite Dimensional Optimization and Convexity, The University of Chicago Press, Chicago, 1983.
  • [7] R. Glowinski, J. L. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities, North Holland, Amsterdam, 1981.
  • [8] M. Grasmair, Minimizers of optimization problems, To appear.
  • [9] A.J. Kurdila and M. Zabarankin., Convex functional analysis, Systems and Control: Foundations and Applications. Birkhauser Verlag, Basel, 2005.
  • [10] J.P. Vial, Strong convexity of set and functions, J. Math. Econom 9 (1982), 187-205.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Benard Okelo 0000-0003-3963-1910

Acceptance Date September 19, 2019
Publication Date October 30, 2019
IZ https://izlik.org/JA45UG38FF
Published in Issue Year 2019 Volume: 1 Issue: 2

Cite

APA Okelo, B. (2019). On Convex Optimization in Hilbert Spaces. Maltepe Journal of Mathematics, 1(2), 89-95. https://izlik.org/JA45UG38FF
AMA 1.Okelo B. On Convex Optimization in Hilbert Spaces. Maltepe Journal of Mathematics. 2019;1(2):89-95. https://izlik.org/JA45UG38FF
Chicago Okelo, Benard. 2019. “On Convex Optimization in Hilbert Spaces”. Maltepe Journal of Mathematics 1 (2): 89-95. https://izlik.org/JA45UG38FF.
EndNote Okelo B (October 1, 2019) On Convex Optimization in Hilbert Spaces. Maltepe Journal of Mathematics 1 2 89–95.
IEEE [1]B. Okelo, “On Convex Optimization in Hilbert Spaces”, Maltepe Journal of Mathematics, vol. 1, no. 2, pp. 89–95, Oct. 2019, [Online]. Available: https://izlik.org/JA45UG38FF
ISNAD Okelo, Benard. “On Convex Optimization in Hilbert Spaces”. Maltepe Journal of Mathematics 1/2 (October 1, 2019): 89-95. https://izlik.org/JA45UG38FF.
JAMA 1.Okelo B. On Convex Optimization in Hilbert Spaces. Maltepe Journal of Mathematics. 2019;1:89–95.
MLA Okelo, Benard. “On Convex Optimization in Hilbert Spaces”. Maltepe Journal of Mathematics, vol. 1, no. 2, Oct. 2019, pp. 89-95, https://izlik.org/JA45UG38FF.
Vancouver 1.Okelo B. On Convex Optimization in Hilbert Spaces. Maltepe Journal of Mathematics [Internet]. 2019 Oct. 1;1(2):89-95. Available from: https://izlik.org/JA45UG38FF

Creative Commons License
The published articles in MJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2667-7660