Research Article
BibTex RIS Cite
Year 2019, Volume: 1 Issue: 1, 9 - 17, 09.04.2019

Abstract

References

  • [1] C.G. Aras, A. Sonmez, H. Çakallı, An approach to soft functions, J. Math. Anal. 8, 2, 129-138, (2017).
  • [2] H. Bor, On Generalized Absolute Cesaro Summability, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 57, 2, 323-328, (2011). DOI: 10.2478/v10157-011-0029-9
  • [3] Naim L. Braha, H. Cakalli, A new type continuity for real functions, J. Math. Anal. 7, 6, 68-76, (2016).
  • [4] D. Burton, and J. Coleman, Quasi-Cauchy Sequences, Amer. Math. Monthly 117, 4, 328-333, (2010).
  • [5] H. Cakalli, A variation on arithmetic continuity, Bol. Soc. Paran. Mat. 35, 3, 195-202, (2017).
  • [6] H. Cakalli, A Variation on Statistical Ward Continuity, Bull. Malays. Math. Sci. Soc. (2015). https://doi.org/10.1007/s40840-015-0195-0
  • [7] H. Çakalli, C.G. Aras, and A. Sonmez, Lacunary statistical ward continuity, AIP Conf. Proc. 1676, Article Number: 020042, (2015). doi: 10.1063/1.4930468
  • [8] H. Çakallı and H. Kaplan, A variation on strongly lacunary ward continuity, J. Math. Anal. 7, 3, 13-20, (2016).
  • [9] A. Caserta, and Ljubisa. D. R. Kocinac, On statistical exhaustiveness, Appl. Math. Lett. 25, 10, 1447-1451, (2012).
  • [10] J. Connor, K.-G.Grosse-Erdmann, Sequential de nitions of continuity for real functions, Rocky Mountain J. Math. 33, 1, 93-121, (2003).
  • [11] H. Çakallı, Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math., 26 2, 113-119 (1995)
  • [12] H. Çakallı, Slowly oscillating continuity, Abstr. Appl. Anal. Hindawi Publ. Corp. New York, ISSN 1085-3375, Volume 2008, Article ID 485706, (2008). doi:10.1155/2008/485706
  • [13] H. Çakallı, Sequential de nitions of compactness, Appl. Math. Lett. 21, 6, 594-598, (2008).
  • [14] H. Çakallı, A study on statistical convergence, Funct. Anal. Approx. Comput. 1, 2, 19-24, (2009).
  • [15] H. Çakallı, Forward continuity, J. Comput. Anal. Appl. 13, 2, 225-230, (2011).
  • [16] H. Çakallı, On $\Delta$-quasi-slowly oscillating sequences, Comput. Math. Appl. 62, 9, 3567-3574, (2011).
  • [17] H. Çakallı, Statistical quasi-Cauchy sequences, Math. Comput. Modelling, 54, no. 5-6, 1620- 1624, (2011).
  • [18] H. Çakallı, $\delta$-quasi-Cauchy sequences, Math. Comput. Modelling, 53, no. 1-2, 397-401, (2011).
  • [19] H. Çakallı, Statistical ward continuity, Appl. Math. Lett. 24, 10, 1724-1728, (2011).
  • [20] H. Çakallı, On G-continuity, Comput. Math. Appl. 61, 2, 313-318, (2011).
  • [21] H. Çakallı, Sequential de nitions of connectedness, Appl. Math. Lett., 25, 3, 461-465, (2012).
  • [22] H. Çakallı, N-theta-Ward continuity, Abstr. Appl. Anal. Hindawi Publ. Corp., New York, Volume 2012, Article ID 680456, 8 pp, (2012). doi:10.1155/2012/680456.
  • [23] H. Çakallı, Variations on quasi-Cauchy sequences, Filomat, 29, 1, 13-19, (2015).
  • [24] H. Çakallı, Upward and downward statistical continuities, Filomat, 29, 10, 2265-2273, (2015).
  • [25] H. Cakalli, A new approach to statistically quasi Cauchy sequences, Maltepe Journal of Mathematics, 1, 1, 1-8, (2019).
  • [26] H. Çakallı, A. Sonmez, and Ç . Genç, On an equivalence of topological vector space valued cone metric spaces and metric spaces, Appl. Math. Lett. 25, 3, 429-433, (2012).
  • [27] H. Cakalli, and G. Canak, (Pn; s)-absolute almost convergent sequences, Indian J. Pure Appl. Math. 28, 4, 525-532, (1997).
  • [28] H. Çakallı, and Pratulananda Das, Fuzzy compactness via summability, Appl. Math. Lett. 22, 11, 1665-1669, (2009).
  • [29] H. Çakallı, and B. Hazarika, Ideal quasi-Cauchy sequences, J. Inequal. Appl. 2012 (2012), Article 234, 11 pages.
  • [30] H. Çakallı, and H. Kaplan, A study on N-theta quasi-Cauchy sequences, Abstr. Appl. Anal., Hindawi Publ. Corp., New York, Volume 2013, Article ID 836970 Article ID 836970, 4 pages,(2013). doi:10.1155/2013/836970
  • [31] H. Cakalli, and H. Kaplan, A variation on lacunary statistical quasi Cauchy sequences, Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics, 66, 2, 71-79, (2017). 10.1501/Commua1 0000000802
  • [32] H. Çakallı, and M.K. Khan, Summability in topological spaces, Appl. Math. Lett. 24, 348- 352,(2011).
  • [33] H. Cakalli and O. Mucuk, Lacunary statistically upward and downward half quasi-Cauchy sequences, J. Math. Anal. 7 2 (2016), 12-23.
  • [34] H. Çakallı, R.F. Patterson, Functions preserving slowly oscillating double sequences, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 62, 2, vol. 2. 531-536, (2016). http://www.math.uaic.ro/ annalsmath/pdf-uri
  • [35] H. Cakalli, A. Sonmez, Slowly oscillating continuity in abstract metric spaces Filomat, 27, 5, 925-930, (2013).
  • [36] H. Çakallı, A. Sonmez , and Ç .G. Aras, $\lambda$-statistically ward continuity, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. Tomul LXII, 2017, Tom LXIII, f. 2, 308-3012, (2017). DOI: 10.1515/aicu- 2015-0016
  • [37] H. Çakallı, and E.Iet Taylan, On Absolutely Almost Convergence, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), Tom LXIII, f. 1 1-6, (2017). Doi: 10.2478/aicu-2014-0032
  • [38] I. Canak and M. Dik, New types of continuities, Abstr. Appl. Anal. 2010, Article ID 258980, 6 pages, (2010).
  • [39] D. Djurcic, Ljubisa D.R. Kocinac, M.R. Zizovic, Double sequences and selections, Abstr. Appl. Anal. Art. ID 497594, 6 pp, (2012).
  • [40] A.E. Coskun, C.G Aras, H. Cakalli, and A. Sonmez, Soft matrices on soft multisets in an optimal decision process, AIP Conference Proceedings, 1759, 1, 020099 (2016); doi: 10.1063/1.4959713
  • [41] F. Dik, M. Dik, and I. Canak, Applications of subsequential Tauberian theory to classical Tauberian theory, Appl. Math. Lett., 20, 8, 946-950, (2007).
  • [42] I. Canak, and M. Dik, New Types of Continuities, Abstr. Appl. Anal., Hindawi Publ. Corp., New York, ISSN 1085-3375, Volume 2010, Article ID 258980, (2010). doi:10.1155/2010/258980
  • [43] Fridy, J.A., On statistical convergence, Analysis, 5, 301-313 (1985)
  • [44] M.Et,H.Sengul, On pointwise lacunary statistical convergence of order of sequences of function. Proc. Nat. Acad. Sci.India Sect. A., 85, no.2, 253-258, (2015).
  • [45] Fridy, J.A. and Orhan, C., Lacunary statistical convergence, Paci c J. Math., 160 1, 43-51 (1993)
  • [46] Fridy, J.A. and Orhan, C., Lacunary statistical summability, J. Math. Anal. Appl, 173 2, 497-504 (1993)
  • [47] H. Kaplan, H. Cakalli, Variations on strongly lacunary quasi Cauchy sequences, AIP Conf. Proc. 1759, Article Number: 020051, (2016). doi: http://dx.doi.org/10.1063/1.4959665
  • [48] H. Kaplan, H. Cakalli, Variations on strong lacunary quasi-Cauchy sequences, J. Nonlinear Sci. Appl. 9, 4371-4380, (2016).
  • [49] Ljubisa D.R. Kocinac, Selection properties in fuzzy metric spaces, Filomat, 26, 2, 305-312, (2012).
  • [50] O. Mucuk, T. Şahan On G-Sequential Continuity, Filomat, 28, 6, 1181-1189, (2014). DOI 10.2298/FIL1406181M
  • [51] P.N. Natarajan, Classical Summability Theory, Springer Nature Singapore Pte Ltd. 130 pages, (2017). doi: 10.1007/978-981-10-4205-8
  • [52] H. Seyhan Ozarslan, and Ş. Yıldız, A new study on the absolute summability factors of Fourier series, J. Math. Anal. 7, 1, 31-36, (2016).
  • [53] S. K. Pal, E. Savas, and H. Cakalli, I-convergence on cone metric spaces, Sarajevo J. Math. 9, 85-93, (2013).
  • [54] R.F. Patterson and H. Cakalli, Quasi Cauchy double sequences, Tbilisi Math. J., 8, 2, 211-219, (2015).
  • [55] Richard F. Patterson, and E. Savas, Asymptotic equivalence of double sequences, Hacet. J. Math. Stat. 41, 4, 487-497, (2012).
  • [56] H.Sengul, M.Et, On (, I)-statistical convergence of order of sequences of function. Proc. Nat. Acad. Sci.India Sect. A, 88, no.2, 181-186, (2018).
  • [57] H.Sengul, M.Et, On I-lacunary statistical convergence of order of sequences of sets. Filomat 31, no.8, 2403-2412, (2018).
  • [58] A. Sonmez, On paracompactness in cone metric spaces, Appl. Math. Lett. 23, 494-497, (2010).
  • [59] R.W. Vallin, Creating slowly oscillating sequences and slowly oscillating continuous func- tions, With an appendix by Vallin and H. Cakalli, Acta Math. Univ. Comenianae, 25, 1, 71-78, (2011).
  • [60] T. Yaying and B. Hazarika, On arithmetic continuity, Bol. Soc. Paran. Mat. 35, 1, (2017), 139-145, (2017).
  • [61] T. Yaying, B. Hazarika, H. Cakalli, New results in quasi cone metric spaces, J. Math. Computer Sci. 16, 435-444, (2016).
  • [62] Ş. Yıldız, A new theorem on local properties of factored Fourier series, Bull. Math. Anal. Appl. 8, 2, 1-8, (2016).
  • [63] Ş. Yıldız, On Absolute Matrix Summability Factors of In nite Series and Fourier Series, Gazi University Journal of Science, 30, 1, 363-370, (2017).
  • [64] Ş. Yıldız, _ Istatistiksel bosluklu delta 2 quasi Cauchy dizileri, Sakarya University Journal of Science, 21, 6, (2017). DOI: 10.16984/saufenbilder.336128 , http://www.saujs.sakarya.edu.tr/issue/26999/336128
  • [65] S. Yildiz On application of matrix summability to Fourier series, Math. Methods Appl. Sci. (2017). https://doi.org/10.1002/mma.4635
  • [66] S. Yildiz Variations on lacunary statistical quasi Cauchy sequences, AIP Conference Proceedings 2086, 030045 (2019); https://doi.org/10.1063/1.5095130 Published Online: 02 April 2019

Lacunary Statistical $p$-Quasi Cauchy Sequences

Year 2019, Volume: 1 Issue: 1, 9 - 17, 09.04.2019

Abstract

In this paper, we introduce a concept of lacunary statistically $p$-quasi-Cauchyness of a real sequence in the sense that a sequence $(\alpha_{k})$ is lacunary statistically $p$-quasi-Cauchy if $\lim_{r\rightarrow\infty}\frac{1}{h_{r}}|\{k\in I_{r}: |\alpha_{k+p}-\alpha_{k}|\geq{\varepsilon}\}|=0$ for each $\varepsilon>0$. A function $f$ is called lacunary statistically $p$-ward continuous on a subset $A$ of the set of real numbers $\mathbb{R}$ if it preserves lacunary statistically $p$-quasi-Cauchy sequences, i.e. the sequence $(f(\alpha_{n}))$ is lacunary statistically $p$-quasi-Cauchy whenever $\boldsymbol\alpha=(\alpha_{n})$ is a lacunary statistically $p$-quasi-Cauchy sequence of points in $A$. It turns out that a real valued function $f$ is uniformly continuous on a bounded subset $A$ of $\mathbb{R}$ if there exists a positive integer $p$ such that $f$ preserves lacunary statistically $p$-quasi-Cauchy sequences of points in $A$.

References

  • [1] C.G. Aras, A. Sonmez, H. Çakallı, An approach to soft functions, J. Math. Anal. 8, 2, 129-138, (2017).
  • [2] H. Bor, On Generalized Absolute Cesaro Summability, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 57, 2, 323-328, (2011). DOI: 10.2478/v10157-011-0029-9
  • [3] Naim L. Braha, H. Cakalli, A new type continuity for real functions, J. Math. Anal. 7, 6, 68-76, (2016).
  • [4] D. Burton, and J. Coleman, Quasi-Cauchy Sequences, Amer. Math. Monthly 117, 4, 328-333, (2010).
  • [5] H. Cakalli, A variation on arithmetic continuity, Bol. Soc. Paran. Mat. 35, 3, 195-202, (2017).
  • [6] H. Cakalli, A Variation on Statistical Ward Continuity, Bull. Malays. Math. Sci. Soc. (2015). https://doi.org/10.1007/s40840-015-0195-0
  • [7] H. Çakalli, C.G. Aras, and A. Sonmez, Lacunary statistical ward continuity, AIP Conf. Proc. 1676, Article Number: 020042, (2015). doi: 10.1063/1.4930468
  • [8] H. Çakallı and H. Kaplan, A variation on strongly lacunary ward continuity, J. Math. Anal. 7, 3, 13-20, (2016).
  • [9] A. Caserta, and Ljubisa. D. R. Kocinac, On statistical exhaustiveness, Appl. Math. Lett. 25, 10, 1447-1451, (2012).
  • [10] J. Connor, K.-G.Grosse-Erdmann, Sequential de nitions of continuity for real functions, Rocky Mountain J. Math. 33, 1, 93-121, (2003).
  • [11] H. Çakallı, Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math., 26 2, 113-119 (1995)
  • [12] H. Çakallı, Slowly oscillating continuity, Abstr. Appl. Anal. Hindawi Publ. Corp. New York, ISSN 1085-3375, Volume 2008, Article ID 485706, (2008). doi:10.1155/2008/485706
  • [13] H. Çakallı, Sequential de nitions of compactness, Appl. Math. Lett. 21, 6, 594-598, (2008).
  • [14] H. Çakallı, A study on statistical convergence, Funct. Anal. Approx. Comput. 1, 2, 19-24, (2009).
  • [15] H. Çakallı, Forward continuity, J. Comput. Anal. Appl. 13, 2, 225-230, (2011).
  • [16] H. Çakallı, On $\Delta$-quasi-slowly oscillating sequences, Comput. Math. Appl. 62, 9, 3567-3574, (2011).
  • [17] H. Çakallı, Statistical quasi-Cauchy sequences, Math. Comput. Modelling, 54, no. 5-6, 1620- 1624, (2011).
  • [18] H. Çakallı, $\delta$-quasi-Cauchy sequences, Math. Comput. Modelling, 53, no. 1-2, 397-401, (2011).
  • [19] H. Çakallı, Statistical ward continuity, Appl. Math. Lett. 24, 10, 1724-1728, (2011).
  • [20] H. Çakallı, On G-continuity, Comput. Math. Appl. 61, 2, 313-318, (2011).
  • [21] H. Çakallı, Sequential de nitions of connectedness, Appl. Math. Lett., 25, 3, 461-465, (2012).
  • [22] H. Çakallı, N-theta-Ward continuity, Abstr. Appl. Anal. Hindawi Publ. Corp., New York, Volume 2012, Article ID 680456, 8 pp, (2012). doi:10.1155/2012/680456.
  • [23] H. Çakallı, Variations on quasi-Cauchy sequences, Filomat, 29, 1, 13-19, (2015).
  • [24] H. Çakallı, Upward and downward statistical continuities, Filomat, 29, 10, 2265-2273, (2015).
  • [25] H. Cakalli, A new approach to statistically quasi Cauchy sequences, Maltepe Journal of Mathematics, 1, 1, 1-8, (2019).
  • [26] H. Çakallı, A. Sonmez, and Ç . Genç, On an equivalence of topological vector space valued cone metric spaces and metric spaces, Appl. Math. Lett. 25, 3, 429-433, (2012).
  • [27] H. Cakalli, and G. Canak, (Pn; s)-absolute almost convergent sequences, Indian J. Pure Appl. Math. 28, 4, 525-532, (1997).
  • [28] H. Çakallı, and Pratulananda Das, Fuzzy compactness via summability, Appl. Math. Lett. 22, 11, 1665-1669, (2009).
  • [29] H. Çakallı, and B. Hazarika, Ideal quasi-Cauchy sequences, J. Inequal. Appl. 2012 (2012), Article 234, 11 pages.
  • [30] H. Çakallı, and H. Kaplan, A study on N-theta quasi-Cauchy sequences, Abstr. Appl. Anal., Hindawi Publ. Corp., New York, Volume 2013, Article ID 836970 Article ID 836970, 4 pages,(2013). doi:10.1155/2013/836970
  • [31] H. Cakalli, and H. Kaplan, A variation on lacunary statistical quasi Cauchy sequences, Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics, 66, 2, 71-79, (2017). 10.1501/Commua1 0000000802
  • [32] H. Çakallı, and M.K. Khan, Summability in topological spaces, Appl. Math. Lett. 24, 348- 352,(2011).
  • [33] H. Cakalli and O. Mucuk, Lacunary statistically upward and downward half quasi-Cauchy sequences, J. Math. Anal. 7 2 (2016), 12-23.
  • [34] H. Çakallı, R.F. Patterson, Functions preserving slowly oscillating double sequences, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 62, 2, vol. 2. 531-536, (2016). http://www.math.uaic.ro/ annalsmath/pdf-uri
  • [35] H. Cakalli, A. Sonmez, Slowly oscillating continuity in abstract metric spaces Filomat, 27, 5, 925-930, (2013).
  • [36] H. Çakallı, A. Sonmez , and Ç .G. Aras, $\lambda$-statistically ward continuity, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. Tomul LXII, 2017, Tom LXIII, f. 2, 308-3012, (2017). DOI: 10.1515/aicu- 2015-0016
  • [37] H. Çakallı, and E.Iet Taylan, On Absolutely Almost Convergence, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), Tom LXIII, f. 1 1-6, (2017). Doi: 10.2478/aicu-2014-0032
  • [38] I. Canak and M. Dik, New types of continuities, Abstr. Appl. Anal. 2010, Article ID 258980, 6 pages, (2010).
  • [39] D. Djurcic, Ljubisa D.R. Kocinac, M.R. Zizovic, Double sequences and selections, Abstr. Appl. Anal. Art. ID 497594, 6 pp, (2012).
  • [40] A.E. Coskun, C.G Aras, H. Cakalli, and A. Sonmez, Soft matrices on soft multisets in an optimal decision process, AIP Conference Proceedings, 1759, 1, 020099 (2016); doi: 10.1063/1.4959713
  • [41] F. Dik, M. Dik, and I. Canak, Applications of subsequential Tauberian theory to classical Tauberian theory, Appl. Math. Lett., 20, 8, 946-950, (2007).
  • [42] I. Canak, and M. Dik, New Types of Continuities, Abstr. Appl. Anal., Hindawi Publ. Corp., New York, ISSN 1085-3375, Volume 2010, Article ID 258980, (2010). doi:10.1155/2010/258980
  • [43] Fridy, J.A., On statistical convergence, Analysis, 5, 301-313 (1985)
  • [44] M.Et,H.Sengul, On pointwise lacunary statistical convergence of order of sequences of function. Proc. Nat. Acad. Sci.India Sect. A., 85, no.2, 253-258, (2015).
  • [45] Fridy, J.A. and Orhan, C., Lacunary statistical convergence, Paci c J. Math., 160 1, 43-51 (1993)
  • [46] Fridy, J.A. and Orhan, C., Lacunary statistical summability, J. Math. Anal. Appl, 173 2, 497-504 (1993)
  • [47] H. Kaplan, H. Cakalli, Variations on strongly lacunary quasi Cauchy sequences, AIP Conf. Proc. 1759, Article Number: 020051, (2016). doi: http://dx.doi.org/10.1063/1.4959665
  • [48] H. Kaplan, H. Cakalli, Variations on strong lacunary quasi-Cauchy sequences, J. Nonlinear Sci. Appl. 9, 4371-4380, (2016).
  • [49] Ljubisa D.R. Kocinac, Selection properties in fuzzy metric spaces, Filomat, 26, 2, 305-312, (2012).
  • [50] O. Mucuk, T. Şahan On G-Sequential Continuity, Filomat, 28, 6, 1181-1189, (2014). DOI 10.2298/FIL1406181M
  • [51] P.N. Natarajan, Classical Summability Theory, Springer Nature Singapore Pte Ltd. 130 pages, (2017). doi: 10.1007/978-981-10-4205-8
  • [52] H. Seyhan Ozarslan, and Ş. Yıldız, A new study on the absolute summability factors of Fourier series, J. Math. Anal. 7, 1, 31-36, (2016).
  • [53] S. K. Pal, E. Savas, and H. Cakalli, I-convergence on cone metric spaces, Sarajevo J. Math. 9, 85-93, (2013).
  • [54] R.F. Patterson and H. Cakalli, Quasi Cauchy double sequences, Tbilisi Math. J., 8, 2, 211-219, (2015).
  • [55] Richard F. Patterson, and E. Savas, Asymptotic equivalence of double sequences, Hacet. J. Math. Stat. 41, 4, 487-497, (2012).
  • [56] H.Sengul, M.Et, On (, I)-statistical convergence of order of sequences of function. Proc. Nat. Acad. Sci.India Sect. A, 88, no.2, 181-186, (2018).
  • [57] H.Sengul, M.Et, On I-lacunary statistical convergence of order of sequences of sets. Filomat 31, no.8, 2403-2412, (2018).
  • [58] A. Sonmez, On paracompactness in cone metric spaces, Appl. Math. Lett. 23, 494-497, (2010).
  • [59] R.W. Vallin, Creating slowly oscillating sequences and slowly oscillating continuous func- tions, With an appendix by Vallin and H. Cakalli, Acta Math. Univ. Comenianae, 25, 1, 71-78, (2011).
  • [60] T. Yaying and B. Hazarika, On arithmetic continuity, Bol. Soc. Paran. Mat. 35, 1, (2017), 139-145, (2017).
  • [61] T. Yaying, B. Hazarika, H. Cakalli, New results in quasi cone metric spaces, J. Math. Computer Sci. 16, 435-444, (2016).
  • [62] Ş. Yıldız, A new theorem on local properties of factored Fourier series, Bull. Math. Anal. Appl. 8, 2, 1-8, (2016).
  • [63] Ş. Yıldız, On Absolute Matrix Summability Factors of In nite Series and Fourier Series, Gazi University Journal of Science, 30, 1, 363-370, (2017).
  • [64] Ş. Yıldız, _ Istatistiksel bosluklu delta 2 quasi Cauchy dizileri, Sakarya University Journal of Science, 21, 6, (2017). DOI: 10.16984/saufenbilder.336128 , http://www.saujs.sakarya.edu.tr/issue/26999/336128
  • [65] S. Yildiz On application of matrix summability to Fourier series, Math. Methods Appl. Sci. (2017). https://doi.org/10.1002/mma.4635
  • [66] S. Yildiz Variations on lacunary statistical quasi Cauchy sequences, AIP Conference Proceedings 2086, 030045 (2019); https://doi.org/10.1063/1.5095130 Published Online: 02 April 2019
There are 66 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Şebnem Yıldız 0000-0003-3763-0308

Publication Date April 9, 2019
Acceptance Date January 5, 2019
Published in Issue Year 2019 Volume: 1 Issue: 1

Cite

APA Yıldız, Ş. (2019). Lacunary Statistical $p$-Quasi Cauchy Sequences. Maltepe Journal of Mathematics, 1(1), 9-17.
AMA Yıldız Ş. Lacunary Statistical $p$-Quasi Cauchy Sequences. Maltepe Journal of Mathematics. April 2019;1(1):9-17.
Chicago Yıldız, Şebnem. “Lacunary Statistical $p$-Quasi Cauchy Sequences”. Maltepe Journal of Mathematics 1, no. 1 (April 2019): 9-17.
EndNote Yıldız Ş (April 1, 2019) Lacunary Statistical $p$-Quasi Cauchy Sequences. Maltepe Journal of Mathematics 1 1 9–17.
IEEE Ş. Yıldız, “Lacunary Statistical $p$-Quasi Cauchy Sequences”, Maltepe Journal of Mathematics, vol. 1, no. 1, pp. 9–17, 2019.
ISNAD Yıldız, Şebnem. “Lacunary Statistical $p$-Quasi Cauchy Sequences”. Maltepe Journal of Mathematics 1/1 (April 2019), 9-17.
JAMA Yıldız Ş. Lacunary Statistical $p$-Quasi Cauchy Sequences. Maltepe Journal of Mathematics. 2019;1:9–17.
MLA Yıldız, Şebnem. “Lacunary Statistical $p$-Quasi Cauchy Sequences”. Maltepe Journal of Mathematics, vol. 1, no. 1, 2019, pp. 9-17.
Vancouver Yıldız Ş. Lacunary Statistical $p$-Quasi Cauchy Sequences. Maltepe Journal of Mathematics. 2019;1(1):9-17.

Creative Commons License
The published articles in MJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2667-7660