Research Article
BibTex RIS Cite
Year 2019, Volume: 1 Issue: 2, 89 - 95, 30.10.2019

Abstract

References

  • [1]F. Albiac and N. J. Kalton, Topics in Banach space theory, Volume 233 of Graduate Texts in Mathematics. Springer, New York, 2006.
  • [2] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, United Kingdom, 2004.
  • [3] D. P. Bertsekas, Convex Analysis and Optimization, Athena Scienti.c, Belmont, MA, 2003.
  • [4] N. Dunford and J. T. Schwartz, Linear operators, Part I. Wiley Classics Library. John Wiley and Sons Inc., New York, 1988.
  • [5] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North Holland, Amsterdam, 1976.
  • [6] I. Ekeland and T. Turnbull, In nite Dimensional Optimization and Convexity, The University of Chicago Press, Chicago, 1983.
  • [7] R. Glowinski, J. L. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities, North Holland, Amsterdam, 1981.
  • [8] M. Grasmair, Minimizers of optimization problems, To appear.
  • [9] A.J. Kurdila and M. Zabarankin., Convex functional analysis, Systems and Control: Foundations and Applications. Birkhauser Verlag, Basel, 2005.
  • [10] J.P. Vial, Strong convexity of set and functions, J. Math. Econom 9 (1982), 187-205.

On Convex Optimization in Hilbert Spaces

Year 2019, Volume: 1 Issue: 2, 89 - 95, 30.10.2019

Abstract

In this paper, convex optimization techniques are employed for convex optimization problems in infinite dimensional Hilbert spaces. A first order optimality condition is given. Let  $f : \mathbb{R}^{n}\rightarrow \mathbb{R}$ and let $x\in \mathbb{R}^{n}$ be a local solution to the problem $\min_{x\in \mathbb{R}^{n}} f(x).$ Then $f'(x,d)\geq 0$ for every direction $d\in \mathbb{R}^{n}$  for which $f'(x,d)$ exists. Moreover, Let  $f : \mathbb{R}^{n}\rightarrow \mathbb{R}$ be differentiable at  $x^{*}\in \mathbb{R}^{n}.$ If $x^{*}$ is a local minimum of $f$, then $\nabla f(x^{*}) = 0.$ A simple application involving the Dirichlet problem is also given. Lastly, we have given optimization conditions involving positive semi-definite matrices.

References

  • [1]F. Albiac and N. J. Kalton, Topics in Banach space theory, Volume 233 of Graduate Texts in Mathematics. Springer, New York, 2006.
  • [2] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, United Kingdom, 2004.
  • [3] D. P. Bertsekas, Convex Analysis and Optimization, Athena Scienti.c, Belmont, MA, 2003.
  • [4] N. Dunford and J. T. Schwartz, Linear operators, Part I. Wiley Classics Library. John Wiley and Sons Inc., New York, 1988.
  • [5] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North Holland, Amsterdam, 1976.
  • [6] I. Ekeland and T. Turnbull, In nite Dimensional Optimization and Convexity, The University of Chicago Press, Chicago, 1983.
  • [7] R. Glowinski, J. L. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities, North Holland, Amsterdam, 1981.
  • [8] M. Grasmair, Minimizers of optimization problems, To appear.
  • [9] A.J. Kurdila and M. Zabarankin., Convex functional analysis, Systems and Control: Foundations and Applications. Birkhauser Verlag, Basel, 2005.
  • [10] J.P. Vial, Strong convexity of set and functions, J. Math. Econom 9 (1982), 187-205.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Benard Okelo 0000-0003-3963-1910

Publication Date October 30, 2019
Acceptance Date September 19, 2019
Published in Issue Year 2019 Volume: 1 Issue: 2

Cite

APA Okelo, B. (2019). On Convex Optimization in Hilbert Spaces. Maltepe Journal of Mathematics, 1(2), 89-95.
AMA Okelo B. On Convex Optimization in Hilbert Spaces. Maltepe Journal of Mathematics. October 2019;1(2):89-95.
Chicago Okelo, Benard. “On Convex Optimization in Hilbert Spaces”. Maltepe Journal of Mathematics 1, no. 2 (October 2019): 89-95.
EndNote Okelo B (October 1, 2019) On Convex Optimization in Hilbert Spaces. Maltepe Journal of Mathematics 1 2 89–95.
IEEE B. Okelo, “On Convex Optimization in Hilbert Spaces”, Maltepe Journal of Mathematics, vol. 1, no. 2, pp. 89–95, 2019.
ISNAD Okelo, Benard. “On Convex Optimization in Hilbert Spaces”. Maltepe Journal of Mathematics 1/2 (October 2019), 89-95.
JAMA Okelo B. On Convex Optimization in Hilbert Spaces. Maltepe Journal of Mathematics. 2019;1:89–95.
MLA Okelo, Benard. “On Convex Optimization in Hilbert Spaces”. Maltepe Journal of Mathematics, vol. 1, no. 2, 2019, pp. 89-95.
Vancouver Okelo B. On Convex Optimization in Hilbert Spaces. Maltepe Journal of Mathematics. 2019;1(2):89-95.

Creative Commons License
The published articles in MJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2667-7660