ROC curve is a graphic presentation of the relationship between both sensitivity and specificity. By the help of curves we can decide the optimal model through determining the best threshold for a diagnostic test. They also provide comparision the success of different tests in correct clinical diagnosis. ROC analysis is an analysis method that will contribute to the process of clinical decision-making when the diagnosis process will take a long time, the cost will be high, special method-equipment and qualified human resources will be needed by determining appropriate cut-off values for indicators that will be determined in short-time, low-cost, and easily obtainable.
ROC eğrisi duyarlılık ve seçicilik arasındaki ilişkinin grafiksel bir gösterimidir. Eğriler yardımı ile bir tanı testi için en iyi eşik değer saptanarak en uygun modele karar verebiliriz. Ayrıca farklı tanı testlerinin doğru klinik tanı koymadaki başarısının karşılaştırılmasına olanak sağlarlar. ROC analizi; tanı sürecinin uzun zaman alacağı, maliyetin yüksek, özel yöntem-ekipman ve nitelikli insan gücüne gereksinim duyulacağı durumlarda; kısa zamanda, düşük maliyetle, kolay elde edilebilen belirteçler için uygun kesim noktalarını belirleyerek klinik karar verme sürecine önemli katkı sağlayacak bir analiz yöntemidir.
Primary Language | Turkish |
---|---|
Journal Section | Articles |
Authors | |
Publication Date | March 1, 2013 |
Published in Issue | Year 2013 |