BibTex RIS Cite

Bipolar disorder and oxidative stress

Year 2014, Volume: 4 Issue: 2, 70 - 9, 08.10.2014
https://doi.org/10.5455/jmood.20131205063815

Abstract

The evidence about the role of oxidative stress on the pathophysiology of bipolar disorder (BD) has been increased recently. It has been considered that oxidative stress and its effects cause damage in the critical brain circuits regulating affective functions, emotions, motor behaviors and so that the symptoms seen in BD occur by the deterioration of mood-stabilizing mechanisms. In clinical trials, significant changes were determined in the BD patients’ levels of antioxidant enzymes, lipid peroxidation and nitric oxide. Because of the different clinical features of the disorder such as manic/hypomanic, depressive, or mixed episode, the data associated with oxidative stress might vary among the patients. Some mood stabilizers used in the treatment are known to have antioxidant effects. Normalization of the oxidative stress parameters had been reported in the treatment process of BD. It makes a positive contribution to the treatment process that these drugs increase the neurotrophic factors and protect against apoptosis as well as reducing the effects of oxidative stress. Reactive oxygen species occur with the escape of some electrons from the chain during their flow in the mitochondria complex and mitochondrial dysfunction develops after the inhibition of electron transport chain. Mitochondrial dysfunction found to be associated with the pathogenesis of BD. Mitochondrial dysfunction and oxidative stress may create symptoms of the BD secondary to the changes in intracellular signaling system, balance of intracellular calcium, and DNA structure. Using antioxidants, in addition to the treatment, is expected to provide positive contribution to the prognosis in bipolar patients. Systematic studies including each period of the disorder are needed for using the findings indicating deterioration of oxidative balance as biological markers in BD.

References

  • 1. MorganVA, Mitchell PB, Jablensky AV. The epidemiology of bipolar disorder: sociodemographic, disability and service utilization data from the Australian National Study of Low Prevalence (Psychotic) Disorders. Bipolar Disord 2005;7:326-37.
  • 2. Andreazza AC, Cassini C, Rosa AR, Leite MC, Almeida LMV, Nardin P, Cunha AB, Ceresér KM, Santin A, Gottfried C, Salvador M, Kapczinski F, Gonçalves CA. Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res 2007;41:523-9.
  • 3. Kuloğlu M, Ustundag B, Atmaca M, Canatan H, Tezcan E, Cinkilinc N. Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem Funct 2002;20:171-5.
  • 4. Ranjekar PK, Hinge A, Hegde MV, Ghate M, Kale A, Sitasawad S, Wagh UV, Debsikdar VB, Mahadik SP. Decreased antioxidantenzymes and membrane essential polyunsaturated fatty acids in schizophrenicand bipolar mood disorder patients. Psychiatry Res 2003;121:109-22.
  • 5. Steckert AV, Valvassori SS, Moretti M, Dal-Pizzol F, Quevedo J. Role of oxidative stres in the pathophysiology of bipolar disorder. Neurochem Res 2010;35:1295-301.
  • 6. Gergerlioglu HS, Savas HA, Bulbul F, Selek S, Uz E, Yumru M. Changes in nitric oxidelevel and superoxide dismutase activity during antimanic treatment. Prog Neuropsychopharmacol Biol Psychiatry 2007;31:697-702.
  • 7. Machado-Vieira R, Andreazza AC, Viale CI, Zanatto V, Cereser Jr V, Vargas RS, Kapczinski F, Portela LV, Souza DO, Salvador M, Gentil V. Oxidativestress parameters in unmedicated and treated bipolar subjects during initialmanic episode: a possible role for lithium antioxidant effects. Neurosci Lett 2007;421:33-6.
  • 8. Selek S, Savas HA, Gergerlioglu HS, Bulbul F, Uz E, Yumru M. The course of nitric oxideand superoxide dismutase during treatment of bipolar depressive episode. J Affect Disord 2008;107:89-94.
  • 9. Savas HA, Gergerlioglu HS, Armutcu F, Herken H, Yilmaz HR, Kocoglu E, Selek S, Tutkun H, Zoroglu SS, Akyol O. Elevated serum nitric oxide and superoxide dismutase in euthymic bipolar patients: impactof past episodes. World J Biol Psychiatry 2006;7:51-5.
  • 10. Özcan ME, Gulec M, Ozerol E, Polat R, Akyol O. Antioxidant enzyme activities and oxidativestress in affective disorders. Int Clin Psychopharmacol 2004;19:89-95.
  • 11. Berk M, Kapczinskie F, Andreazzae AC, Deana OM, Giorlando F, Maesg M, Yücel M, Gamae CS, Dodda S, Deand B, Magalhãesa PVS, Ammingerb P, McGorryb P, Malhi GS. Pathways underlying neuroprogression in bipolar disorder: Focus on inflammation, oxidative stress and neurotrophic factors. Neuroscience and Biobehavioral Reviews 2011;35:804-17.
  • 12. Zarate CA, Singh J Jr, Manji HK. Cellular plasticity cascades: targets for the development of novel therapeutics for bipolar disorder. Biol Psychiatry 2006;59:1006-20 13. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford: Oxford University Press; 2007:440-613.
  • 14. Adam-Vizi V, Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 2006;27:639-45.
  • 15. Ng F, Berk M, Dean O, Bush AI. Oxidative stress in psychiatric disorders: evidence baseand therapeutic implications. Int J Neuropsychopharmacol 2008;21:1-26.
  • 16. Andreazza AC, Kauer-Sant’anna M, Frey BN Bond DJ, Kapczinski F, Young LT, Yatham LN. Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord 2008;111:135-44.
  • 17. Khairova R,Pawar R, Salvadore G, Juruena MF, De Sousa RT, Soeiro-De-Souza MG, Salvador M, Zarate CA, Gattaz WF, Machado-Vieira R.Effects of lithium on oxidative stress parameters in healthySubjects. Mol Med Report 2012;5:680-2.
  • 18. Murad F. Nitric oxide signaling: would you believe that a simple free radical could be a second messenger, autacoid, paracrine substance, neurotransmitter, and hormone? Recent Prog Horm Res 1998;53:43-59.
  • 19. Raffa M, Barhoumi S, Atig F, Fendri C, Kerkeni A, Mechri A. Reduced antioxidant defense systems in schizophrenia and bipolar I disorder. Prog Neuropsychopharmacol Biol Psychiatry 2012;39:371-5.
  • 20. Can M, Güven B, Atik L, Konuk N. Lipid Peroxidation and Serum Antioxidant Enzymes Activity in Patients with Bipolar and Major Depressive Disorders. Journal of Mood Disorders 2011;1:14-8.
  • 21. Abdalla DSP, Manteiro HP, Oliveira JAC, Bechara CH. Activities of superoxide dismutase and glutathione peroxidase in schizophrenic and manic depressive patients. Clin Chem 1986;32:805-7.
  • 22. Wang JF, Shao L, Sun X, Young LT. Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord 2009;11:523-9.
  • 23. Yanik M, Vural H, Tutkun H, Zoroglu SS, Savas HA, Herken H, Koçyigit A, Keles H, Akyol O. The role of the arginine nitricoxide pathway in the pathogenesis of bipolar affective disorder.Eur Arch Psychiatry Clin Neurosci 2004;254:43-7.
  • 24. Savas HA, Gergerlioglu HS, Gurel A, Selek S, Savas E,Kocoglu E. Increased xanthine oxidase and malondialdehydelevels in euthymic bipolar patients. Klinik Psikiyatri Dergisi 2005;8:180-5.
  • 25. SavasHA,Herken H, Yurekli M. Possible role of nitricoxide and adrenomedullin in bipolar affective disorder. Neuropsychobiology 2002;45:57-61.
  • 26. Yanik M, Erel O, Kati M. The relationship between potency of oxidative stress and severity of depression. Acta Neuropsychiatrica 2004;16:200-3.
  • 27. Yumru M, Savas H, Kalenderoglu A, Bulut M, Celik H, Erel O. Oxidative imbalance in bipolar disorder subtypes: A comparative study.Progress in Neuro-Psychopharmacology & Biological Psychiatry 2009;33:1070-4.
  • 28. Kunz M, Gama CS, Andreazza AC, Salvador M, Ceresér KM, Gomes FA, Belmonte-de-Abreu PS, Berk M, Kapczinski F. Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Progress in Neuro-Psychophar macology & Biological Psychiatry 2008;32:1677-81.
  • 29. Bolu A, Aydemir E, Akarsu S, Zincir SB, Kurt YG, Erdem M, Uzun Ö. The Relationship Between Antioxidant Capacity and Attack Properties in Bipolar Disorder Patients.5th International Congress on Psychopharmacology Özet Kitabı, Ekim 30-Kasım 3 2013, Antalya:PP. 76.
  • 30. Frey BN, Andreazza AC, Kunz M, Gomes FA, Quevedo J, Salvador M, Goncalves CA, Kapczinski F. Increased oxidative stress and DNA damage in bipolar disorder: a twin-case report. Prog Neuropsychopharmacol Biol Psychiatry 2007;31:283-5.
  • 31. Frey BN, Valvassori SS, Reus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J. Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J PsychiatryNeurosci 2006;31:326-32.
  • 32. Wang JF, Azzam JE, Young LT. Valproate inhibits oxidative damage to lipid and protein in primary cultured rat cerebrocortical cells. Neuroscience 2003;116:485-9.
  • 33. Shao L, Young LT, Wang JF. Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry 2005;58:879-84.
  • 34. Chen B, Wang JF, Young LT. Chronic valproate treatment increases expression of endoplasmic reticulum stress proteins in the rat cerebral cortex and hippocampus. Biol Psychiatry 2000;48:658-64.
  • 35. Shao L, Sun X, Xu L, Young LT, Wang JF. Mood stabilizing drug lithium increases expression of endoplasmic reticulum stress proteins in primary cultured rat cerebral cortical cells. Life Sci 2006;78:1317-23.
  • 36. Chen G, Zeng WZ, Yuan PX, Huang LD, Jiang YM, Zhao ZH, Manji HK. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem1999;72:879-82.
  • 37. Cui J, Shao L, Young LT, Wang JF. Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate. Neuroscience 2007;144:1447-53.
  • 38. Lai JS, Zhao C, Warsh JJ, Li PP. Cytoprotection by lithium and valproate varies between cell types and cellular stresses. Eur J Pharmacol 2006;539:18-26.
  • 39. Ghribi O, Herman MM, Savory J. Lithium inhibits Abeta-induced stress in endoplasmic reticulum of rabbit hippocampus but does not prevent oxidative damage and tau phosphorylation. J Neurosci Res 2003;71:853-62.
  • 40. Bai O, Chlan-Fourney J, Bowen R, Keegan D, Li XM. Expression of brainderived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs. J Neurosci Res2003;71:127-31.
  • 41. Martinowich K, Manji HK, Lu B. New perspective of BDNF cell biology andits implications in depression. Nat Neurosci 2007;10:1089-93.
  • 42. Chang YC, Rapoport SI, Rao JS. Chronic administration of mood stabilizers upregulates BDNF and bcl-2 expression levels in rat frontal cortex. NeurochemRes 2009;34:536-41.
  • 43. Forester BP, Finn CT, Berlow YA, Wardrop M, Renshaw PF, Moore CM. Brain lithium, N-acetyl aspartate and myo-inositol levels in older adults with bipolar disorder treated with lithium: a lithium–7 and proton magnetic resonance spectroscopy study. Bipolar Disord 2008;10:691-700.
  • 44. Magalhães PV, Dean OM, Bush AI, Copolov DL, Malhi GS, Kohlmann K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Berk M. A preliminary investigation on the efficacy of N-acetyl cysteine for mania or hypomania. Aust N Z J Psychiatry 2013;47:564-8.
  • 45. Berk M, Dean OM, Cotton SM, Gama CS, Kapczinski F, Fernandes B, Kohlmann K, Jeavons S, Hewitt K, Moss K, Allwang C, Schapkaitz I, Cobb H, Bush AI, Dodd S, Malhi GS. Maintenance N-acetyl cysteine treatment for bipolar disorder: a double-blind randomized placebo controlled trial. BMC Med 2012;10:91.
  • 46. Grant JE, Kim SW, Odlaug BL. N-acetyl cysteine, a glutamatemodulatingagent, in the treatment of pathological gambling: a pilot study. Biol Psychiatry 2007;62:652-7.
  • 47. Turnbull T, Cullen-Drill M, Smaldone A. Efficacy of omega-3 fatty acid supplementation on improvement of bipolar symptoms: a systematic review. Arch Psychiatr Nurs 2008;22:305-11.
  • 48. Ross BM, Seguin J, Sieswerda LE. Omega-3 fatty acids as treatments formental illness: which disorder and which fatty acid? Lipids Health Dis 2007;6:21.
  • 49. Barichello T, Bonatto F, Feier G, Martins MR, Moreira JC, DalPizzol F, Izquierdo I, Quevedo J. No evidence for oxidative damage in the hippocampus after acute and chronic electroshock in rats. Brain Res 2004;1014:177-83.
  • 50. Bulut M, Altındağ A, Deveci Z, Kaya MC, Bülbül F, Taşkın A, Kocamer Ş, Savaş HA. İki uçlu bozukluk hastalarında elektrokonvulzif tedavi ve ilaç tedavileri esnasında oksidatif parametrelerdeki değişiklikler. Journal of Mood Disorders 2013;3:93-9.
  • 51. Fattal O, Link J, Quinn K, Cohen BH, Franco K. Psychiatric comorbidity in 36 adults with mitochondrial cytopathies. CNS Spectr 2007;12:429-38.
  • 52. Konradi C, Eaton M, Macdonald ML, Walsh J, Benes FM, Heckers S. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 2004;61:300-8.
  • 53. Jou SH, Chiu NY, Liu CS. Mitochondrial dysfunction and psychiatric disorders. Chang Gung Med J 2009;32:370-9.
  • 54. Baxter Jr LR, Phelps ME, Mazziotta JC, Schwartz JM, Gerner RH, Selin CE,Sumida RM. Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18. ArchGen Psychiatry 1985;42:441-7.
  • 55. Stork C, Renshaw PF. Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 2005;10:900-19.
  • 56. Andreazza AC, Shao L, Wang JF, Young LT. Mitochondrial Complex I Activity and Oxidative Damage to Mitochondrial Proteins in the Prefrontal Cortex of Patients With Bipolar Disorder. Arch Gen Psychiatry 2010;67:360-8.
  • 57. Ricci C, Pastukh V, Leonard J, Turrens J, Wilson G, Schaffer D, Schaffer SW. Mitochondrial DNA damage triggers mitochondrial superoxide generation and apoptosis. Am J Physiol Cell Physiol 2008;294:413-22.
  • 58. Benes FM, Matzilevich D, Burke RE, Walsh J. The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol Psychiatry 2006;11:241-51.
  • 59. Watt NT, Routledge MN, Wild CP,Hooper NM. Cellular prion protein protects against reactive-oxygen-species-induced DNA damage. Free Radic Biol Med 2007;43:959-67.
  • 60. El-Khamisy SF, Caldecott KW. TDP1-dependent DNA single-strand break repair and neurodegeneration. Mutagenesis 2006;21:219-24.
  • 61. Andreazza AC, Kauer-Sant’Anna M, Frey BN,Stertz L, Zanotto C, Ribeiro L, Giasson K, Valvassori SS, Réus GZ, Salvador M, Quevedo J, Gonçalves CA, Kapczinski F. Effects of mood stabilizers on DNA damage in an animal model of mania. J Psychiatry Neurosci 2008;33:516-24.
  • 62. Buttner N, Bhattacharyya S, Walsh J, Benes FM. DNA fragmentation is increased in non-GABAergic neurons in bipolar disorder but not in schizophrenia. Schizophr Res 2007;93:33-41.
  • 63. Kato T. Role of mitochondrial DNA in calcium signaling abnormality in bipolar disorder. Cell Calcium 2008;44:92-102.
  • 64. Xu C, Macciardi F, Li PP,Yoon IS, Cooke RG, Hughes B, Parikh SV, McIntyre RS, Kennedy JL, Warsh JJ. Association of the putative susceptability gene, transient receptor potential protein melastatin type 2, with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2006;141:36-43.
  • 65. Xu C, Li PP, Cooke RG,Parikh SV, Wang K, Kennedy JL, Warsh JJ. TRPM2 variants and bipolar disorder risk:confirmation in a family-based association study. Bipolar Disord 2009;11:1-10.
  • 66. Perova T, Wasserman MJ, Li PP, Warsh JJ. Hyperactive intracellular calcium dynamics in B lymphoblasts from patients with bipolar I disorder. Int J Neuropsychopharmacol 2008;11:185-96.
  • 67. Andreopoulos S, Wasserman MJ, Woo KK, Li PP, Warsh JJ. Chronic lithium treatment of B lymphoblasts from bipolar disorder patients reduces transient receptor potential channel 3 levels. Pharmacogenomics J 2004;4:365-73.
  • 68. Amaral MD, Pozzo-Miller L. TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci 2007;27:5179-89.
  • 69. Tai Y, Feng S, Ge R,Du W, Zhang X, He Z, Wang Y. TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J Cell Sci 2008;121:2301-7.
  • 70. Yoon IS, Li PP, Siu KP,Kennedy JL, Macciardi F, Cooke RG, Parikh SV, Warsh JJ. Altered TRPC7 gene expression in bipolar-I disorder. Biol Psychiatry 2001;50:620-6.
  • 71. Roedding AS, Gaoa AF, Au-Yeunga W, Scarcellia T, Lia PP, Warsha JJ. Effect of oxidative stress on TRPM2 and TRPC3 channels in B lymphoblast cells inbipolar disorder. Bipolar Disorders 2012;14:151-61.
  • 72. Berk M, Dodd S, Kauer-Sant’anna M, Malhi GS, Bourin M, Kapczinski F, NormanT. Dopamine dysregulation syndrome: implications for a dopaminehypothesis of bipolar disorder. Acta Psychiatr Scand 2007;434:41-9.
  • 73. Frey BN, Martins MR, Petronilho FC, Dal-Pizzol F, Quevedo J, Kapczinski F. Increased oxidative stress after repeated amphetamine exposure: possiblerelevance as a model of mania. Bipolar Disord 2006;8:275-80.
  • 74. Frey BN, Valvassori SS, Reus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J. Changes in antioxidant defenseenzymes after D-amphetamine exposure: implications as an animal model ofmania. Neurochem Res 2006;31:699-703.
  • 75. Graham DG, Tiffany SM, Bell Jr WR, Gutknecht WF. Autoxidation versuscovalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cellsin vitro. Mol Pharmacol 1978;14:644- 53.
  • 76. Rees JN, Florang VR, Anderson DG, Doorn JA. Lipid peroxidation products inhibit dopamine catabolism yielding aberrant levels of a reactive intermediate.Chem Res Toxicol 2007;20:1536-42.
  • 77. Berman SB, Hastings TG. Dopamine oxidation alters mitochondrial respirationand induces permeability transition in brain mitochondria: implicationsfor Parkinson’s disease. J Neurochem1999;73:1127-37.
  • 78. Stokes AH, Hastings TG, Vrana KE. Cytotoxic and genotoxic potential ofdopamine. J Neurosci Res1999;55:659-65.

İki uçlu bozukluk ve oksidatif stres

Year 2014, Volume: 4 Issue: 2, 70 - 9, 08.10.2014
https://doi.org/10.5455/jmood.20131205063815

Abstract

Son dönemde oksidatif stresin iki uçlu bozukluğun (İUB) fizyopatolojisinde rolü olduğuna dair bulgular artış göstermektedir. Oksidatif stres ve etkilerinin, özellikle mizacı, emosyonları, motor davranışları düzenleyen kritik beyin devrelerinde hasara neden olduğu; böylece İUB’de görülen belirtilerin mizacı düzenleyen mekanizmalarda bozulma ile ortaya çıktığı düşünülmektedir. Klinik çalışmalarda, İUB hastalarında antioksidan enzim, lipid peroksidasyonu ve nitrik oksit düzeylerinde belirgin değişiklikler saptanmıştır. Hastalığın manik/hipomanik, depresif ya da karma dönem gibi farklı klinik görünümleri nedeniyle oksidatif stres ile ilişkili veriler farklılık gösterebilmektedir. Tedavide kullanılan bazı mizaç düzenleyicilerinin antioksidan özellikleri olduğu bilinmektedir. İUB’nin tedavi sürecinde oksidatif parametrelerde normalleşme bildirilmiştir. Bu ilaçların oksidatif stresi azaltıcı etkisi yanı sıra, nörotrofik faktörleri artırması ve hücre ölümüne karşı koruyucu olması, tedavi sürecine olumlu katkı yapmaktadır. Mitokondri kompleksinde elektron akışı sırasında bazı elektronların zincirden kaçması ile reaktif oksijen radikalleri oluşmakta ve elektron transport zincir inhibisyonu ile mitokondrial işlev bozukluğu gelişmektedir. İUB patogenezi ile mitokondrial işlev bozukluğu ilişkili bulunmuştur. Mitokondrial işlev bozukluğu ve oksidatif hasar, hücre içi sinyal sisteminde, hücre içi kalsiyum dengesinde ve DNA yapısında değişiklikler oluşturarak İUB belirtilerine neden olabilir. İUB’de tedaviye ek olarak antioksidan kullanılmasının hastalığın seyrine olumlu katkı sağlayabileceği düşünülmektedir. İUB’de oksidatif dengedeki bozulmayı gösteren bulguların biyolojik belirteç olarak kullanılabilmesi için, sistemli ve bozukluğun her dönemini kapsayacak çalışmalara ihtiyaç vardır.

References

  • 1. MorganVA, Mitchell PB, Jablensky AV. The epidemiology of bipolar disorder: sociodemographic, disability and service utilization data from the Australian National Study of Low Prevalence (Psychotic) Disorders. Bipolar Disord 2005;7:326-37.
  • 2. Andreazza AC, Cassini C, Rosa AR, Leite MC, Almeida LMV, Nardin P, Cunha AB, Ceresér KM, Santin A, Gottfried C, Salvador M, Kapczinski F, Gonçalves CA. Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res 2007;41:523-9.
  • 3. Kuloğlu M, Ustundag B, Atmaca M, Canatan H, Tezcan E, Cinkilinc N. Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem Funct 2002;20:171-5.
  • 4. Ranjekar PK, Hinge A, Hegde MV, Ghate M, Kale A, Sitasawad S, Wagh UV, Debsikdar VB, Mahadik SP. Decreased antioxidantenzymes and membrane essential polyunsaturated fatty acids in schizophrenicand bipolar mood disorder patients. Psychiatry Res 2003;121:109-22.
  • 5. Steckert AV, Valvassori SS, Moretti M, Dal-Pizzol F, Quevedo J. Role of oxidative stres in the pathophysiology of bipolar disorder. Neurochem Res 2010;35:1295-301.
  • 6. Gergerlioglu HS, Savas HA, Bulbul F, Selek S, Uz E, Yumru M. Changes in nitric oxidelevel and superoxide dismutase activity during antimanic treatment. Prog Neuropsychopharmacol Biol Psychiatry 2007;31:697-702.
  • 7. Machado-Vieira R, Andreazza AC, Viale CI, Zanatto V, Cereser Jr V, Vargas RS, Kapczinski F, Portela LV, Souza DO, Salvador M, Gentil V. Oxidativestress parameters in unmedicated and treated bipolar subjects during initialmanic episode: a possible role for lithium antioxidant effects. Neurosci Lett 2007;421:33-6.
  • 8. Selek S, Savas HA, Gergerlioglu HS, Bulbul F, Uz E, Yumru M. The course of nitric oxideand superoxide dismutase during treatment of bipolar depressive episode. J Affect Disord 2008;107:89-94.
  • 9. Savas HA, Gergerlioglu HS, Armutcu F, Herken H, Yilmaz HR, Kocoglu E, Selek S, Tutkun H, Zoroglu SS, Akyol O. Elevated serum nitric oxide and superoxide dismutase in euthymic bipolar patients: impactof past episodes. World J Biol Psychiatry 2006;7:51-5.
  • 10. Özcan ME, Gulec M, Ozerol E, Polat R, Akyol O. Antioxidant enzyme activities and oxidativestress in affective disorders. Int Clin Psychopharmacol 2004;19:89-95.
  • 11. Berk M, Kapczinskie F, Andreazzae AC, Deana OM, Giorlando F, Maesg M, Yücel M, Gamae CS, Dodda S, Deand B, Magalhãesa PVS, Ammingerb P, McGorryb P, Malhi GS. Pathways underlying neuroprogression in bipolar disorder: Focus on inflammation, oxidative stress and neurotrophic factors. Neuroscience and Biobehavioral Reviews 2011;35:804-17.
  • 12. Zarate CA, Singh J Jr, Manji HK. Cellular plasticity cascades: targets for the development of novel therapeutics for bipolar disorder. Biol Psychiatry 2006;59:1006-20 13. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford: Oxford University Press; 2007:440-613.
  • 14. Adam-Vizi V, Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 2006;27:639-45.
  • 15. Ng F, Berk M, Dean O, Bush AI. Oxidative stress in psychiatric disorders: evidence baseand therapeutic implications. Int J Neuropsychopharmacol 2008;21:1-26.
  • 16. Andreazza AC, Kauer-Sant’anna M, Frey BN Bond DJ, Kapczinski F, Young LT, Yatham LN. Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord 2008;111:135-44.
  • 17. Khairova R,Pawar R, Salvadore G, Juruena MF, De Sousa RT, Soeiro-De-Souza MG, Salvador M, Zarate CA, Gattaz WF, Machado-Vieira R.Effects of lithium on oxidative stress parameters in healthySubjects. Mol Med Report 2012;5:680-2.
  • 18. Murad F. Nitric oxide signaling: would you believe that a simple free radical could be a second messenger, autacoid, paracrine substance, neurotransmitter, and hormone? Recent Prog Horm Res 1998;53:43-59.
  • 19. Raffa M, Barhoumi S, Atig F, Fendri C, Kerkeni A, Mechri A. Reduced antioxidant defense systems in schizophrenia and bipolar I disorder. Prog Neuropsychopharmacol Biol Psychiatry 2012;39:371-5.
  • 20. Can M, Güven B, Atik L, Konuk N. Lipid Peroxidation and Serum Antioxidant Enzymes Activity in Patients with Bipolar and Major Depressive Disorders. Journal of Mood Disorders 2011;1:14-8.
  • 21. Abdalla DSP, Manteiro HP, Oliveira JAC, Bechara CH. Activities of superoxide dismutase and glutathione peroxidase in schizophrenic and manic depressive patients. Clin Chem 1986;32:805-7.
  • 22. Wang JF, Shao L, Sun X, Young LT. Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord 2009;11:523-9.
  • 23. Yanik M, Vural H, Tutkun H, Zoroglu SS, Savas HA, Herken H, Koçyigit A, Keles H, Akyol O. The role of the arginine nitricoxide pathway in the pathogenesis of bipolar affective disorder.Eur Arch Psychiatry Clin Neurosci 2004;254:43-7.
  • 24. Savas HA, Gergerlioglu HS, Gurel A, Selek S, Savas E,Kocoglu E. Increased xanthine oxidase and malondialdehydelevels in euthymic bipolar patients. Klinik Psikiyatri Dergisi 2005;8:180-5.
  • 25. SavasHA,Herken H, Yurekli M. Possible role of nitricoxide and adrenomedullin in bipolar affective disorder. Neuropsychobiology 2002;45:57-61.
  • 26. Yanik M, Erel O, Kati M. The relationship between potency of oxidative stress and severity of depression. Acta Neuropsychiatrica 2004;16:200-3.
  • 27. Yumru M, Savas H, Kalenderoglu A, Bulut M, Celik H, Erel O. Oxidative imbalance in bipolar disorder subtypes: A comparative study.Progress in Neuro-Psychopharmacology & Biological Psychiatry 2009;33:1070-4.
  • 28. Kunz M, Gama CS, Andreazza AC, Salvador M, Ceresér KM, Gomes FA, Belmonte-de-Abreu PS, Berk M, Kapczinski F. Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Progress in Neuro-Psychophar macology & Biological Psychiatry 2008;32:1677-81.
  • 29. Bolu A, Aydemir E, Akarsu S, Zincir SB, Kurt YG, Erdem M, Uzun Ö. The Relationship Between Antioxidant Capacity and Attack Properties in Bipolar Disorder Patients.5th International Congress on Psychopharmacology Özet Kitabı, Ekim 30-Kasım 3 2013, Antalya:PP. 76.
  • 30. Frey BN, Andreazza AC, Kunz M, Gomes FA, Quevedo J, Salvador M, Goncalves CA, Kapczinski F. Increased oxidative stress and DNA damage in bipolar disorder: a twin-case report. Prog Neuropsychopharmacol Biol Psychiatry 2007;31:283-5.
  • 31. Frey BN, Valvassori SS, Reus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J. Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J PsychiatryNeurosci 2006;31:326-32.
  • 32. Wang JF, Azzam JE, Young LT. Valproate inhibits oxidative damage to lipid and protein in primary cultured rat cerebrocortical cells. Neuroscience 2003;116:485-9.
  • 33. Shao L, Young LT, Wang JF. Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry 2005;58:879-84.
  • 34. Chen B, Wang JF, Young LT. Chronic valproate treatment increases expression of endoplasmic reticulum stress proteins in the rat cerebral cortex and hippocampus. Biol Psychiatry 2000;48:658-64.
  • 35. Shao L, Sun X, Xu L, Young LT, Wang JF. Mood stabilizing drug lithium increases expression of endoplasmic reticulum stress proteins in primary cultured rat cerebral cortical cells. Life Sci 2006;78:1317-23.
  • 36. Chen G, Zeng WZ, Yuan PX, Huang LD, Jiang YM, Zhao ZH, Manji HK. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem1999;72:879-82.
  • 37. Cui J, Shao L, Young LT, Wang JF. Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate. Neuroscience 2007;144:1447-53.
  • 38. Lai JS, Zhao C, Warsh JJ, Li PP. Cytoprotection by lithium and valproate varies between cell types and cellular stresses. Eur J Pharmacol 2006;539:18-26.
  • 39. Ghribi O, Herman MM, Savory J. Lithium inhibits Abeta-induced stress in endoplasmic reticulum of rabbit hippocampus but does not prevent oxidative damage and tau phosphorylation. J Neurosci Res 2003;71:853-62.
  • 40. Bai O, Chlan-Fourney J, Bowen R, Keegan D, Li XM. Expression of brainderived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs. J Neurosci Res2003;71:127-31.
  • 41. Martinowich K, Manji HK, Lu B. New perspective of BDNF cell biology andits implications in depression. Nat Neurosci 2007;10:1089-93.
  • 42. Chang YC, Rapoport SI, Rao JS. Chronic administration of mood stabilizers upregulates BDNF and bcl-2 expression levels in rat frontal cortex. NeurochemRes 2009;34:536-41.
  • 43. Forester BP, Finn CT, Berlow YA, Wardrop M, Renshaw PF, Moore CM. Brain lithium, N-acetyl aspartate and myo-inositol levels in older adults with bipolar disorder treated with lithium: a lithium–7 and proton magnetic resonance spectroscopy study. Bipolar Disord 2008;10:691-700.
  • 44. Magalhães PV, Dean OM, Bush AI, Copolov DL, Malhi GS, Kohlmann K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Berk M. A preliminary investigation on the efficacy of N-acetyl cysteine for mania or hypomania. Aust N Z J Psychiatry 2013;47:564-8.
  • 45. Berk M, Dean OM, Cotton SM, Gama CS, Kapczinski F, Fernandes B, Kohlmann K, Jeavons S, Hewitt K, Moss K, Allwang C, Schapkaitz I, Cobb H, Bush AI, Dodd S, Malhi GS. Maintenance N-acetyl cysteine treatment for bipolar disorder: a double-blind randomized placebo controlled trial. BMC Med 2012;10:91.
  • 46. Grant JE, Kim SW, Odlaug BL. N-acetyl cysteine, a glutamatemodulatingagent, in the treatment of pathological gambling: a pilot study. Biol Psychiatry 2007;62:652-7.
  • 47. Turnbull T, Cullen-Drill M, Smaldone A. Efficacy of omega-3 fatty acid supplementation on improvement of bipolar symptoms: a systematic review. Arch Psychiatr Nurs 2008;22:305-11.
  • 48. Ross BM, Seguin J, Sieswerda LE. Omega-3 fatty acids as treatments formental illness: which disorder and which fatty acid? Lipids Health Dis 2007;6:21.
  • 49. Barichello T, Bonatto F, Feier G, Martins MR, Moreira JC, DalPizzol F, Izquierdo I, Quevedo J. No evidence for oxidative damage in the hippocampus after acute and chronic electroshock in rats. Brain Res 2004;1014:177-83.
  • 50. Bulut M, Altındağ A, Deveci Z, Kaya MC, Bülbül F, Taşkın A, Kocamer Ş, Savaş HA. İki uçlu bozukluk hastalarında elektrokonvulzif tedavi ve ilaç tedavileri esnasında oksidatif parametrelerdeki değişiklikler. Journal of Mood Disorders 2013;3:93-9.
  • 51. Fattal O, Link J, Quinn K, Cohen BH, Franco K. Psychiatric comorbidity in 36 adults with mitochondrial cytopathies. CNS Spectr 2007;12:429-38.
  • 52. Konradi C, Eaton M, Macdonald ML, Walsh J, Benes FM, Heckers S. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 2004;61:300-8.
  • 53. Jou SH, Chiu NY, Liu CS. Mitochondrial dysfunction and psychiatric disorders. Chang Gung Med J 2009;32:370-9.
  • 54. Baxter Jr LR, Phelps ME, Mazziotta JC, Schwartz JM, Gerner RH, Selin CE,Sumida RM. Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18. ArchGen Psychiatry 1985;42:441-7.
  • 55. Stork C, Renshaw PF. Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 2005;10:900-19.
  • 56. Andreazza AC, Shao L, Wang JF, Young LT. Mitochondrial Complex I Activity and Oxidative Damage to Mitochondrial Proteins in the Prefrontal Cortex of Patients With Bipolar Disorder. Arch Gen Psychiatry 2010;67:360-8.
  • 57. Ricci C, Pastukh V, Leonard J, Turrens J, Wilson G, Schaffer D, Schaffer SW. Mitochondrial DNA damage triggers mitochondrial superoxide generation and apoptosis. Am J Physiol Cell Physiol 2008;294:413-22.
  • 58. Benes FM, Matzilevich D, Burke RE, Walsh J. The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol Psychiatry 2006;11:241-51.
  • 59. Watt NT, Routledge MN, Wild CP,Hooper NM. Cellular prion protein protects against reactive-oxygen-species-induced DNA damage. Free Radic Biol Med 2007;43:959-67.
  • 60. El-Khamisy SF, Caldecott KW. TDP1-dependent DNA single-strand break repair and neurodegeneration. Mutagenesis 2006;21:219-24.
  • 61. Andreazza AC, Kauer-Sant’Anna M, Frey BN,Stertz L, Zanotto C, Ribeiro L, Giasson K, Valvassori SS, Réus GZ, Salvador M, Quevedo J, Gonçalves CA, Kapczinski F. Effects of mood stabilizers on DNA damage in an animal model of mania. J Psychiatry Neurosci 2008;33:516-24.
  • 62. Buttner N, Bhattacharyya S, Walsh J, Benes FM. DNA fragmentation is increased in non-GABAergic neurons in bipolar disorder but not in schizophrenia. Schizophr Res 2007;93:33-41.
  • 63. Kato T. Role of mitochondrial DNA in calcium signaling abnormality in bipolar disorder. Cell Calcium 2008;44:92-102.
  • 64. Xu C, Macciardi F, Li PP,Yoon IS, Cooke RG, Hughes B, Parikh SV, McIntyre RS, Kennedy JL, Warsh JJ. Association of the putative susceptability gene, transient receptor potential protein melastatin type 2, with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2006;141:36-43.
  • 65. Xu C, Li PP, Cooke RG,Parikh SV, Wang K, Kennedy JL, Warsh JJ. TRPM2 variants and bipolar disorder risk:confirmation in a family-based association study. Bipolar Disord 2009;11:1-10.
  • 66. Perova T, Wasserman MJ, Li PP, Warsh JJ. Hyperactive intracellular calcium dynamics in B lymphoblasts from patients with bipolar I disorder. Int J Neuropsychopharmacol 2008;11:185-96.
  • 67. Andreopoulos S, Wasserman MJ, Woo KK, Li PP, Warsh JJ. Chronic lithium treatment of B lymphoblasts from bipolar disorder patients reduces transient receptor potential channel 3 levels. Pharmacogenomics J 2004;4:365-73.
  • 68. Amaral MD, Pozzo-Miller L. TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci 2007;27:5179-89.
  • 69. Tai Y, Feng S, Ge R,Du W, Zhang X, He Z, Wang Y. TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J Cell Sci 2008;121:2301-7.
  • 70. Yoon IS, Li PP, Siu KP,Kennedy JL, Macciardi F, Cooke RG, Parikh SV, Warsh JJ. Altered TRPC7 gene expression in bipolar-I disorder. Biol Psychiatry 2001;50:620-6.
  • 71. Roedding AS, Gaoa AF, Au-Yeunga W, Scarcellia T, Lia PP, Warsha JJ. Effect of oxidative stress on TRPM2 and TRPC3 channels in B lymphoblast cells inbipolar disorder. Bipolar Disorders 2012;14:151-61.
  • 72. Berk M, Dodd S, Kauer-Sant’anna M, Malhi GS, Bourin M, Kapczinski F, NormanT. Dopamine dysregulation syndrome: implications for a dopaminehypothesis of bipolar disorder. Acta Psychiatr Scand 2007;434:41-9.
  • 73. Frey BN, Martins MR, Petronilho FC, Dal-Pizzol F, Quevedo J, Kapczinski F. Increased oxidative stress after repeated amphetamine exposure: possiblerelevance as a model of mania. Bipolar Disord 2006;8:275-80.
  • 74. Frey BN, Valvassori SS, Reus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J. Changes in antioxidant defenseenzymes after D-amphetamine exposure: implications as an animal model ofmania. Neurochem Res 2006;31:699-703.
  • 75. Graham DG, Tiffany SM, Bell Jr WR, Gutknecht WF. Autoxidation versuscovalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cellsin vitro. Mol Pharmacol 1978;14:644- 53.
  • 76. Rees JN, Florang VR, Anderson DG, Doorn JA. Lipid peroxidation products inhibit dopamine catabolism yielding aberrant levels of a reactive intermediate.Chem Res Toxicol 2007;20:1536-42.
  • 77. Berman SB, Hastings TG. Dopamine oxidation alters mitochondrial respirationand induces permeability transition in brain mitochondria: implicationsfor Parkinson’s disease. J Neurochem1999;73:1127-37.
  • 78. Stokes AH, Hastings TG, Vrana KE. Cytotoxic and genotoxic potential ofdopamine. J Neurosci Res1999;55:659-65.
There are 77 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Murat Erdem This is me

Süleyman Akarsu This is me

Erdal Pan This is me

Yasemin Gülcan Kurt This is me

Publication Date October 8, 2014
Published in Issue Year 2014 Volume: 4 Issue: 2

Cite

APA Erdem, M., Akarsu, S., Pan, E., Kurt, Y. G. (2014). İki uçlu bozukluk ve oksidatif stres. Journal of Mood Disorders, 4(2), 70-9. https://doi.org/10.5455/jmood.20131205063815
AMA Erdem M, Akarsu S, Pan E, Kurt YG. İki uçlu bozukluk ve oksidatif stres. Journal of Mood Disorders. February 2014;4(2):70-9. doi:10.5455/jmood.20131205063815
Chicago Erdem, Murat, Süleyman Akarsu, Erdal Pan, and Yasemin Gülcan Kurt. “İki uçlu Bozukluk Ve Oksidatif Stres”. Journal of Mood Disorders 4, no. 2 (February 2014): 70-9. https://doi.org/10.5455/jmood.20131205063815.
EndNote Erdem M, Akarsu S, Pan E, Kurt YG (February 1, 2014) İki uçlu bozukluk ve oksidatif stres. Journal of Mood Disorders 4 2 70–9.
IEEE M. Erdem, S. Akarsu, E. Pan, and Y. G. Kurt, “İki uçlu bozukluk ve oksidatif stres”, Journal of Mood Disorders, vol. 4, no. 2, pp. 70–9, 2014, doi: 10.5455/jmood.20131205063815.
ISNAD Erdem, Murat et al. “İki uçlu Bozukluk Ve Oksidatif Stres”. Journal of Mood Disorders 4/2 (February 2014), 70-9. https://doi.org/10.5455/jmood.20131205063815.
JAMA Erdem M, Akarsu S, Pan E, Kurt YG. İki uçlu bozukluk ve oksidatif stres. Journal of Mood Disorders. 2014;4:70–9.
MLA Erdem, Murat et al. “İki uçlu Bozukluk Ve Oksidatif Stres”. Journal of Mood Disorders, vol. 4, no. 2, 2014, pp. 70-9, doi:10.5455/jmood.20131205063815.
Vancouver Erdem M, Akarsu S, Pan E, Kurt YG. İki uçlu bozukluk ve oksidatif stres. Journal of Mood Disorders. 2014;4(2):70-9.