Review
BibTex RIS Cite
Year 2018, , 374 - 379, 30.11.2018
https://doi.org/10.17546/msd.482929

Abstract

References

  • 1. Dorman HJ1, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils.J Appl Microbiol.2000. 88(2):308-16.
  • 2. Dall’Acqua S, Viola G, Giorgetti M, Loi MC, Innocenti G. Two new sesquiterpene lactones from the leaves of Laurus nobilis. Chem. Pharm. Bull. 2006. 54:1187-1189.
  • 3. Yılmaz EY, Timur M, Aslim B. Antimicrobial, Antioxidant Activity of the Essential Oil of Bay Laurel from Hatay, Turkey. TEOP 16 (1) 2013 pp 108 – 116.
  • 4. Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol.,2008. 46, 446–475.
  • 5. Ozogul I, Polat A, Ozogul Y, Boga EK, Ayas D. Effects of laurel and myrtle extracts on the sensory, chemical and microbiological properties of vacuum-packed and refrigerated European eel (Anguilla anguilla) fillets. International Journal of food Science and Technology,2013. Doi :10.1111/ijfs.12374
  • 6. Rafiq R, Hayek SA, Anyanwu U, Hardy BI, Giddings VL,Ibrahim SA, Tahergorabi R, Won Kang H. Antibacterial and Antioxidant Activities of Essential Oils from Artemisia herba-alba Asso., Pelargonium capitatum × radens and Laurus nobilis L.Foods, 2016. 5(2):28.
  • 7. Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel),2013. 6(12): 1451-74.
  • 8. Benoit SG, , Saint Gir FT, The Choice of Essential Oils, Health, Beauty and Well-Being by the Aromatherapy, Jouvence Ed., France, 2010.
  • 9. Santos AF, Brotto DF, Favarin LRV, Cabeza NA, Andrade GR, Batistote M, et al. Study of the antimicrobial activity of metal complexes and their ligands through bioassays applied to plant extracts. Rev Bras Farmacogn 2014. 24(3): 309-15.
  • 10. Park HJ, Jung WT, Basnet P, Kadota S, Namba T Syringin 4-Obglucoside, a new phenylpropanoid glycoside, and costunolide, a nitric oxide synthase inhibitor, from the stem bark of Magnolia sieboldii. J. Nat. Prod.1996. 59:1128-1130.
  • 11. Sikkema J, De Bont JAM, Poolman B Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem.1994. 269:8022- 8028.
  • 12. Loäpez P, Saänchez C, Batlle R, Neriän C. Solid- and VaporPhase Antimicrobial Activities of Six Essential Oils:  Susceptibility of Selected Foodborne Bacterial and Fungal Strains. J. Agric. Food Chem. 2005. 53(17):6939-6946
  • 13. Ouibrahim A, Tlili-Ait-Kaki Y, Bennadja S, Amrouni S, Djahoudi AG, Djebar MR. Evaluation of antibacterial activity of Laurus nobilis L., Rosmarinus officinalis L. and Ocimum basilicum L. from Northeast of Algeria. African journal of microbiology research 2013. ,7(42): 4968-4973.
  • 14. Bennadja S, Thili Ait Kaki Y, Djahoudi A, Hadef Y,Chefrour A. Antibiotic Activity of the Essential Oil of Laurel (Laurus nobilis L.) on Eight Bacterial Strains. Journal of Life Sciences, 2013. 7 (8): 814-819.
  • 15. Erkan, N., Tosun, S.Y., Ulusoy, S. & Uretener, G. The use € of thyme and laurel essential oil treatments to extend the shelf life of bluefish (Pomatomus saltatrix) during storage in ice. Journal fur€ Verbraucherschutz und Lebensmittelsicherheit, 2011. 6, 39–48.
  • 16. Sambhy V, MacBride, M. M, Peterson, B. R, Sen A. 2006. Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc, 2: 9798-9808.
  • 17. Williams RL, Doherty PJ, Vince DG, Grashoff GJ, Williams D.F. The biocompatibility of silver. Crit. Rev .Biocompat, 1989. 5:221–243.
  • 18. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 2007. 90, 213902- 1–213902-3
  • 19. Agarwal H, Menon S, Kumar S, Rajeshkumar S. .Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biological Interactions, 2018.286: 60-70.
  • 20. Cowan M.M. Plant products as antimicrobial agents. Clin Microbiol Rev., 1999 12: 564-582.
  • 21. Ahmad, A.; Senapati, S.; Khan, M. I.; Kumar, R; Sastry, M. Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp. Langmuir. 2003. 19, 3550–3553.
  • 22. Vijayakumar S, Vaseeharan B, Malaikozhundan B, Shobiya M. Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Biomedicine & Pharmacotherapy. 2016. 84 1213–1222
  • 23. Puzyn T.; Leszczynski J.; Cronin M.T.D. Recent Advances in QSAR Studies: Methods and Applications, Springer. 2010.
  • 24. Mukherjee, P.; Senapati, S.; Mandal, D.; Ahmad, A.; Khan, M. I.; Kumar, R.; Sastry, M. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Bio Chem., 2002. 3, 461- 463.
  • 25. Hahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochemistry.2007;42:919–923.

Antibacterial Activity of Laurus nobilis: A review of literature

Year 2018, , 374 - 379, 30.11.2018
https://doi.org/10.17546/msd.482929

Abstract

The presence of
phenolic compounds in spices and herbs, along with the essential oils, has been
gaining attention due to their various functions like antioxidant capacity,
antimicrobial properties, and flavoring properties. The Bay leaf belongs to
Lauraceae family and is endemic in the Mediterranean region. Lauraceae, is an aromatic plant frequently used
as a spice in Mediterranean cookery and as a traditional medicine for the
treatment of several infectious disease. L.
nobilis
also belongs to Lauraceae. L.
nobilis
is aromatic tree, and is 2 m to 10 m high. L.nobilis contains about 1.3% essential oils and polar flavonoids mono,
sesquiterpenes, alkoloids, glycosylated flavor-noids, megastigmane and phenolic
components. It is known to have various pharmacological effects, including
antimicrobial, cytotoxic and immune modulating. Its’ essential oil containg
eucalyptol, α-terpinyl acetate, linalool, methyl eugenol, sabinene and
carvacrol. The property of every essential oil varies according to the harvest
country, altitude, period of sunshine, conditions of harvest. These essential
oil contents of L. nobilis are strong
antibacterial activity against Gram negative and Gram positive foodorne
pathogens (Salmonella, Staphylococcus aureus, Esherichia coli, Listeria monocytogenes like that),
spoilage bacteria (Pseudomonas aeroginosa) as well as antifungal
effects. The synergy between terpenes (linalool), lactones, oxides (1,8
cineole) and monoterpenes (camphene, alpa-pinene) gives to the  essential oil of Laurel a good antibacterial
activity. Its essential oils’ various or single chemical compositions at
different concentrations have different inhibition mechanisms that can affect a
variety of pathogens by changing membrane permeability, denaturing proteins and
inhibiting enzymes. The oils are not affecting on existing beneficial
intestinal bacteria. 

References

  • 1. Dorman HJ1, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils.J Appl Microbiol.2000. 88(2):308-16.
  • 2. Dall’Acqua S, Viola G, Giorgetti M, Loi MC, Innocenti G. Two new sesquiterpene lactones from the leaves of Laurus nobilis. Chem. Pharm. Bull. 2006. 54:1187-1189.
  • 3. Yılmaz EY, Timur M, Aslim B. Antimicrobial, Antioxidant Activity of the Essential Oil of Bay Laurel from Hatay, Turkey. TEOP 16 (1) 2013 pp 108 – 116.
  • 4. Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol.,2008. 46, 446–475.
  • 5. Ozogul I, Polat A, Ozogul Y, Boga EK, Ayas D. Effects of laurel and myrtle extracts on the sensory, chemical and microbiological properties of vacuum-packed and refrigerated European eel (Anguilla anguilla) fillets. International Journal of food Science and Technology,2013. Doi :10.1111/ijfs.12374
  • 6. Rafiq R, Hayek SA, Anyanwu U, Hardy BI, Giddings VL,Ibrahim SA, Tahergorabi R, Won Kang H. Antibacterial and Antioxidant Activities of Essential Oils from Artemisia herba-alba Asso., Pelargonium capitatum × radens and Laurus nobilis L.Foods, 2016. 5(2):28.
  • 7. Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel),2013. 6(12): 1451-74.
  • 8. Benoit SG, , Saint Gir FT, The Choice of Essential Oils, Health, Beauty and Well-Being by the Aromatherapy, Jouvence Ed., France, 2010.
  • 9. Santos AF, Brotto DF, Favarin LRV, Cabeza NA, Andrade GR, Batistote M, et al. Study of the antimicrobial activity of metal complexes and their ligands through bioassays applied to plant extracts. Rev Bras Farmacogn 2014. 24(3): 309-15.
  • 10. Park HJ, Jung WT, Basnet P, Kadota S, Namba T Syringin 4-Obglucoside, a new phenylpropanoid glycoside, and costunolide, a nitric oxide synthase inhibitor, from the stem bark of Magnolia sieboldii. J. Nat. Prod.1996. 59:1128-1130.
  • 11. Sikkema J, De Bont JAM, Poolman B Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem.1994. 269:8022- 8028.
  • 12. Loäpez P, Saänchez C, Batlle R, Neriän C. Solid- and VaporPhase Antimicrobial Activities of Six Essential Oils:  Susceptibility of Selected Foodborne Bacterial and Fungal Strains. J. Agric. Food Chem. 2005. 53(17):6939-6946
  • 13. Ouibrahim A, Tlili-Ait-Kaki Y, Bennadja S, Amrouni S, Djahoudi AG, Djebar MR. Evaluation of antibacterial activity of Laurus nobilis L., Rosmarinus officinalis L. and Ocimum basilicum L. from Northeast of Algeria. African journal of microbiology research 2013. ,7(42): 4968-4973.
  • 14. Bennadja S, Thili Ait Kaki Y, Djahoudi A, Hadef Y,Chefrour A. Antibiotic Activity of the Essential Oil of Laurel (Laurus nobilis L.) on Eight Bacterial Strains. Journal of Life Sciences, 2013. 7 (8): 814-819.
  • 15. Erkan, N., Tosun, S.Y., Ulusoy, S. & Uretener, G. The use € of thyme and laurel essential oil treatments to extend the shelf life of bluefish (Pomatomus saltatrix) during storage in ice. Journal fur€ Verbraucherschutz und Lebensmittelsicherheit, 2011. 6, 39–48.
  • 16. Sambhy V, MacBride, M. M, Peterson, B. R, Sen A. 2006. Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc, 2: 9798-9808.
  • 17. Williams RL, Doherty PJ, Vince DG, Grashoff GJ, Williams D.F. The biocompatibility of silver. Crit. Rev .Biocompat, 1989. 5:221–243.
  • 18. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 2007. 90, 213902- 1–213902-3
  • 19. Agarwal H, Menon S, Kumar S, Rajeshkumar S. .Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biological Interactions, 2018.286: 60-70.
  • 20. Cowan M.M. Plant products as antimicrobial agents. Clin Microbiol Rev., 1999 12: 564-582.
  • 21. Ahmad, A.; Senapati, S.; Khan, M. I.; Kumar, R; Sastry, M. Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp. Langmuir. 2003. 19, 3550–3553.
  • 22. Vijayakumar S, Vaseeharan B, Malaikozhundan B, Shobiya M. Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Biomedicine & Pharmacotherapy. 2016. 84 1213–1222
  • 23. Puzyn T.; Leszczynski J.; Cronin M.T.D. Recent Advances in QSAR Studies: Methods and Applications, Springer. 2010.
  • 24. Mukherjee, P.; Senapati, S.; Mandal, D.; Ahmad, A.; Khan, M. I.; Kumar, R.; Sastry, M. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Bio Chem., 2002. 3, 461- 463.
  • 25. Hahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochemistry.2007;42:919–923.
There are 25 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Review Article
Authors

Belgin Sırıken

Ceren Yavuz This is me

Ayhan Güler 0000-0002-7023-2267

Publication Date November 30, 2018
Published in Issue Year 2018

Cite

APA Sırıken, B., Yavuz, C., & Güler, A. (2018). Antibacterial Activity of Laurus nobilis: A review of literature. Medical Science and Discovery, 5(11), 374-379. https://doi.org/10.17546/msd.482929
AMA Sırıken B, Yavuz C, Güler A. Antibacterial Activity of Laurus nobilis: A review of literature. Med Sci Discov. November 2018;5(11):374-379. doi:10.17546/msd.482929
Chicago Sırıken, Belgin, Ceren Yavuz, and Ayhan Güler. “Antibacterial Activity of Laurus Nobilis: A Review of Literature”. Medical Science and Discovery 5, no. 11 (November 2018): 374-79. https://doi.org/10.17546/msd.482929.
EndNote Sırıken B, Yavuz C, Güler A (November 1, 2018) Antibacterial Activity of Laurus nobilis: A review of literature. Medical Science and Discovery 5 11 374–379.
IEEE B. Sırıken, C. Yavuz, and A. Güler, “Antibacterial Activity of Laurus nobilis: A review of literature”, Med Sci Discov, vol. 5, no. 11, pp. 374–379, 2018, doi: 10.17546/msd.482929.
ISNAD Sırıken, Belgin et al. “Antibacterial Activity of Laurus Nobilis: A Review of Literature”. Medical Science and Discovery 5/11 (November 2018), 374-379. https://doi.org/10.17546/msd.482929.
JAMA Sırıken B, Yavuz C, Güler A. Antibacterial Activity of Laurus nobilis: A review of literature. Med Sci Discov. 2018;5:374–379.
MLA Sırıken, Belgin et al. “Antibacterial Activity of Laurus Nobilis: A Review of Literature”. Medical Science and Discovery, vol. 5, no. 11, 2018, pp. 374-9, doi:10.17546/msd.482929.
Vancouver Sırıken B, Yavuz C, Güler A. Antibacterial Activity of Laurus nobilis: A review of literature. Med Sci Discov. 2018;5(11):374-9.