Research Article
BibTex RIS Cite

BEŞ MANTAR TÜRÜNÜN KEMOMETRİK YAKLAŞIM İLE GC VE GC-MS KULLANILARAK YAĞ ASİDİ BİLEŞİMİ

Year 2023, , 11 - 18, 31.12.2023
https://doi.org/10.22531/muglajsci.1281010

Abstract

Yağ asitleri, enerji kaynakları ve zar bileşenleri olarak bilinmektedir. Yağ asitlerinin biyolojik etkileri, hücre ve doku metabolizmasını etkilemek ve hormonal ve diğer sinyallere yanıt vermekten oluşmaktadır. Bu çalışma, Türkiye'de doğal olarak yayılış gösteren Cerrena unicolor, Hymenochaete rubiginosa, Inocutis rheades, Leptoporus mollis ve Polyporus squamosus isimli beş farklı mantarın yağ asidi bileşimlerini gaz kromatografisi (GC) ve GC-kütle spektrometresi (GC-MS) kullanarak karakterize etmek üzere tasarlanmıştır. Mantar türlerinde toplam on altı yağ asidi taranmıştır. Çalışılan bütün mantar türlerinde en fazla bulunan yağ asitleri linoleik (%10,35-65,69), oleik (%12,03-53,27), palmitik (%12,68-21,16), stearik (%2,39-4,36) ve palmitoleik (%1,40-4,26) asitler olarak kaydedilmiştir. Doymamış yağ asitlerinin (UFA) miktarları (%60,02-80,70) doymuş yağ asitlerinden (SFA) (%19,24-39,58) daha yüksek hesaplanmıştır. Mantar türlerinin yağ asidi bileşimleri açısından korelasyonları veya farklılıkları, temel bileşenler analizi (PCA) ve hiyerarşik kümeleme analizi (HCA) kullanılarak kemometrik olarak incelenmiştir. Her iki analizde de diğer dört mantar türünden en yüksek oranda linoleik asit (%65.69) ile H. rubiginosa ayrılmıştır.

References

  • Lesa, K.N., Khandaker, M.U., Iqbal, F.M.R., Sharma, R., Islam, F., Mitra, S., and Emran, T.B., ''Nutritional value, medicinal importance, and health-promoting effects of dietary mushroom (Pleurotus ostreatus)'', Journal of Food Quality, 2022, Article ID 2454180, 2022.
  • Thatoi, H., and Singdevsachan, S.K., ''Diversity, nutritional composition and medicinal potential of Indian mushrooms: A review'', African Journal of Biotechnology, 13(4), 523-545, 2014.
  • Dawadi, E., Magar, P.B., Bhandari, S., Subedi, S., Shrestha, S., and Shrestha, J., ''Nutritional and post-harvest quality preservation of mushrooms: A review'', Heliyon, 8, e12093, 2022.
  • Rizzo, G., Goggi, S., Giampieri, F., and Baroni, L., ''A review of mushrooms in human nutrition and health'', Trends in Food Science & Technology, 117, 60-73, 2021.
  • Yadav, D., and Negi, P.S., ''Bioactive components of mushrooms: Processing effects and health benefits'', Food Research International, 148, 110599, 2021.
  • Singh, M.P., Rai, S.N., Dubey, S.K., Pandey, A.T., Tabassum, N., Chaturvedi, V.K., and Singh, N.B. ''Biomolecules of mushroom: a recipe of human wellness'', Critical Reviews in Biotechnology, 42(6), 913-930, 2022.
  • Vesga-Jimenez, D.J., Martin, C., Barreto, G.E., Aristizabal-Pachon, A.F., Pinzon, A., and Gonzalez, J., ''Fatty Acids: an insight into the pathogenesis of neurodegenerative diseases and therapeutic potential'', International Journal of Molecular Sciences, 23, 2577, 2022.
  • Tel-Çayan, G., Deveci, E., Çayan, F., ''Updates on fatty acids in mushrooms: content, characterization, and biological effects'', (Editors: Stojkovic, D., and Barros, L.), ''Edible Fungi: Chemical composition, nutrition and health effects'', Royal Society of Chemistry, 2023.
  • Cholewski, M., Tomczykowa, M., and Tomczyk, M., ''A comprehensive review of chemistry, sources and bioavailability of omega-3 fatty acids'', Nutrients, 10, 1662, 2018.
  • Ferreri, C., Sansone, A., Chatgilialoglu, C., Ferreri, R, Amezaga, J., Burgos, M.C., Arranz, S., and Tueros, I., ''Critical review on fatty acid-based food and nutraceuticals as supporting therapy in cancer'', International Journal of Molecular Sciences, 23, 2022.
  • Çayan, F., Deveci, E., Tel-Çayan, G., and Duru, M.E., ''Chemometric approaches for the characterization of the fatty acid composition of seventeen mushroom species'', Analytical Letters, 53(17), 2784-2798, 2020.
  • Fetterman, J.W., and Zdanowicz, M.M., ''Therapeutic potential of n-3 polyunsaturated fatty acids in disease'', American Journal of Health-System Pharmacy, 66, 1169, 2009.
  • Karacor, K., and Cam, M., ''Effects of oleic acid'', Medical Science and Discovery, 2(1), 125-132, 2015.
  • Senyilmaz-Tiebe, D., Pfaff, D.H., Virtue, S., Schwarz, K.V., Fleming, T., Altamura, S., Muckenthaler, M.U., Okun, J.G., Vidal-Puig, A., Nawroth, P., and Teleman, A.A., ''Dietary stearic acid regulates mitochondria in vivo in humans'', Nature Communications, 9, 3129, 2018.
  • Beesley, J.S., Soutter, W.P., and White, J.O., ''Effect of stearic acid on human cervical cancer cell growth'', (Editors: Nigam, S., Honn, K.V., Marnett, L.J., and Walden, T.L.), ''Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury'', Springer, Boston, MA, 1993.
  • Kühn, T., Floegel, A., Sookthai, D., Johnson, T., Rolle-Kampczyk, U., Otto, W., Von Bergen, M., Boeing, H., and Kaaks, R., ''Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study'', BMC Medicine, 14, 13, 2016.
  • Shikama, Y., Kudo, Y., Ishimaru, N., and Funaki, M., ''Potential role of free fatty acids in the pathogenesis of periodontitis and primary Sjögren’s syndrome'', International Journal of Molecular Sciences, 18 (4), 836-844, 2017.
  • Agostoni, C., Moreno, L., and Shamir, R., ''Palmitic acid and health: introduction'', Critical Reviews in Food Science and Nutrition, 56(12), 1941, 2016.
  • Bermudez, M.A., Pereira, L., Fraile, C., Valerio, L., Balboa, M.A., and Balsinde, J. ''Roles of palmitoleic acid and its positional isomers, hypogeic and sapienic acids, in inflammation, metabolic diseases and cancer'', Cells, 11(14), 2146, 2022.
  • Diez, V.A., and Alvarez, A., ''Compositional and nutritional studies on two wild edible mushrooms from Northwest Spain'', Food Chemistry, 75(4), 417-422, 2021.
  • Zengin, G., Sarikurkcu, C., Aktumsek, A., Uysal, S., Ceylan, R., Anwar, F., and Solak, M.H., ''A Comparative fatty acid compositional analysis of different wild species of mushrooms from Turkey', Emirates Journal of Food and Agriculture, 27(7), 532-536, 2015.
  • Ergönül, P.E., Akata, I., Kalyoncu, F., and Ergönül, B., ''Fatty acid compositions of six wild edible mushroom species'', The Scientific World Journal, 2013, Article ID 163964, 2013.
  • Mocan, A., Fernandes, A., Barros, L., Crişan, G., Smiljkovic, M., Sokovic, M., and Ferreira, I.C.F.R., ''Chemical composition and bioactive properties of the wild mushroom Polyporus squamosus (Huds.) Fr: a study with samples from Romania'', Food & Function, 9, 160-170, 2018.
  • Çayan, F., Tel-Çayan, G., Özler, M.A., and Duru, M.E., ''Comparative study of fatty acids profile of wild mushroom species from Turkey'', Eurasian Journal of Analytical Chemistry, 12(3), 257-263, 2017.
  • Bengu, A.S. ''The fatty acid composition in some economic and wild edible mushrooms in Turkey'', Progress in Nutrition, 22, 185-192, 2020.
  • Isik, H. ''Fatty acid contents of three wild edible mushroom species'', Chemistry of Natural Compounds, 56, 1114-1116, 2020.
  • Olennikov, D.N., Agafonova, S.V., Penzina, T.A., and Borovski, G.B., ''Fatty acid composition of fourteen wood-decaying basidiomycete species growing in permafrost conditions'', Records of Natural Products, 8:2, 184-188, 2014.
  • Shahid, M., Fatima, H., Anjum, F., Riaz, M., Akhter, N., and Murtaza, M.A., ''Proximate composition, antioxidant activities and fatty acid profiling of selected mushrooms collected from Azad jammu and Kashmir'', Acta Poloniae Pharmaceutica Drug Research, 77, 145, 2020.
  • Eminoğlu, G., and Şenel, E., ''Chemometric approaches in sensory evaluation of dairy products'', Academic Food, 17(1), 102-110, 2019.
  • Jolliffe, I.T., and Cadima, J., ''Principal component analysis: A review and recent developments'', Philosophical Transactions of the Royal Society A, 374, 20150202, 2016.
  • Wenderski, T.A., Stratton, F., Bauer, R.A., Kopp, F., and Tan, D.S., ''Principal component analysis as a tool for library design: A case study investigating natural products, brand-name drugs, natural product-like libraries, and drug-like libraries'', Methods in Molecular Biology, 1263, 225-242, 2015.
  • Tokul-Olmez, O., Kaplaner, E., Ozturk, M., Ullah, Z., and Duru, M.E. ''Fatty acid profile of four Ganoderma species collected from various host trees with chemometric approach'', Biochemical Systematics and Ecology, 78, 91-97, 2018.
  • Wang, J., Li, W., Li, Z., Wu, W., and Tang, X. ''Analysis and evaluation of the characteristic taste components in Portobello mushroom'', Journal of Food Science, 83(6), 1542-1551, 2018.
  • Çayan, F., Tel-Çayan, G., Deveci, E., Duru, M.E. ''A comprehensive study on phenolic compounds and bioactive properties of five mushroom species via chemometric approach'', Journal of Food Processing and Preservation, 45, e15695, 2021.
  • Chen, L., Zhu, H., Li, Y., Zhang, Y., Zhang, W., Yang, L., Yin, H., Dong, C., and Wang, Y. ''Combining multielement analysis and chemometrics to trace the geographical origin of Thelephora ganbajun'', Journal of Food Composition and Analysis, 96, 103699, 2021.

FATTY ACID COMPOSITION OF FIVE MUSHROOM SPECIES BY GC AND GC-MS WITH A CHEMOMETRIC APPROACH

Year 2023, , 11 - 18, 31.12.2023
https://doi.org/10.22531/muglajsci.1281010

Abstract

Fatty acids are recognized as energy sources and membrane components. The biological effects of the fatty acids are composed of influencing cell and tissue metabolism, and responding to hormonal and other signals. This study was planned to characterize the fatty acid compositions of five different mushrooms namely, Cerrena unicolor, Hymenochaete rubiginosa, Inocutis rheades, Leptoporus mollis, and Polyporus squamosus naturally distributed in Turkey by using gas chromatography (GC) and GC-mass spectrometry (GC-MS). A total of sixteen fatty acids were screened in the mushroom species. The most abundant fatty acids were recorded as linoleic (10.35-65.69%), oleic (12.03-53.27%), palmitic (12.68-21.16%), stearic (2.39-4.36%) and palmitoleic (1.40-4.26%) acids in all studied mushrooms. The amounts of unsaturated fatty acids (UFAs) (60.02-80.70%) were calculated higher than saturated fatty acids (SFAs) (19.24-39.58%). The correlations or differences of the mushroom species with regard to fatty acid compositions were chemometrically investigated by using principal component analysis (PCA) and hierarchical clustering analysis (HCA). H. rubiginosa was separated with the highest amount of linoleic acid (65.69%) from other four mushroom species in both analyses.

References

  • Lesa, K.N., Khandaker, M.U., Iqbal, F.M.R., Sharma, R., Islam, F., Mitra, S., and Emran, T.B., ''Nutritional value, medicinal importance, and health-promoting effects of dietary mushroom (Pleurotus ostreatus)'', Journal of Food Quality, 2022, Article ID 2454180, 2022.
  • Thatoi, H., and Singdevsachan, S.K., ''Diversity, nutritional composition and medicinal potential of Indian mushrooms: A review'', African Journal of Biotechnology, 13(4), 523-545, 2014.
  • Dawadi, E., Magar, P.B., Bhandari, S., Subedi, S., Shrestha, S., and Shrestha, J., ''Nutritional and post-harvest quality preservation of mushrooms: A review'', Heliyon, 8, e12093, 2022.
  • Rizzo, G., Goggi, S., Giampieri, F., and Baroni, L., ''A review of mushrooms in human nutrition and health'', Trends in Food Science & Technology, 117, 60-73, 2021.
  • Yadav, D., and Negi, P.S., ''Bioactive components of mushrooms: Processing effects and health benefits'', Food Research International, 148, 110599, 2021.
  • Singh, M.P., Rai, S.N., Dubey, S.K., Pandey, A.T., Tabassum, N., Chaturvedi, V.K., and Singh, N.B. ''Biomolecules of mushroom: a recipe of human wellness'', Critical Reviews in Biotechnology, 42(6), 913-930, 2022.
  • Vesga-Jimenez, D.J., Martin, C., Barreto, G.E., Aristizabal-Pachon, A.F., Pinzon, A., and Gonzalez, J., ''Fatty Acids: an insight into the pathogenesis of neurodegenerative diseases and therapeutic potential'', International Journal of Molecular Sciences, 23, 2577, 2022.
  • Tel-Çayan, G., Deveci, E., Çayan, F., ''Updates on fatty acids in mushrooms: content, characterization, and biological effects'', (Editors: Stojkovic, D., and Barros, L.), ''Edible Fungi: Chemical composition, nutrition and health effects'', Royal Society of Chemistry, 2023.
  • Cholewski, M., Tomczykowa, M., and Tomczyk, M., ''A comprehensive review of chemistry, sources and bioavailability of omega-3 fatty acids'', Nutrients, 10, 1662, 2018.
  • Ferreri, C., Sansone, A., Chatgilialoglu, C., Ferreri, R, Amezaga, J., Burgos, M.C., Arranz, S., and Tueros, I., ''Critical review on fatty acid-based food and nutraceuticals as supporting therapy in cancer'', International Journal of Molecular Sciences, 23, 2022.
  • Çayan, F., Deveci, E., Tel-Çayan, G., and Duru, M.E., ''Chemometric approaches for the characterization of the fatty acid composition of seventeen mushroom species'', Analytical Letters, 53(17), 2784-2798, 2020.
  • Fetterman, J.W., and Zdanowicz, M.M., ''Therapeutic potential of n-3 polyunsaturated fatty acids in disease'', American Journal of Health-System Pharmacy, 66, 1169, 2009.
  • Karacor, K., and Cam, M., ''Effects of oleic acid'', Medical Science and Discovery, 2(1), 125-132, 2015.
  • Senyilmaz-Tiebe, D., Pfaff, D.H., Virtue, S., Schwarz, K.V., Fleming, T., Altamura, S., Muckenthaler, M.U., Okun, J.G., Vidal-Puig, A., Nawroth, P., and Teleman, A.A., ''Dietary stearic acid regulates mitochondria in vivo in humans'', Nature Communications, 9, 3129, 2018.
  • Beesley, J.S., Soutter, W.P., and White, J.O., ''Effect of stearic acid on human cervical cancer cell growth'', (Editors: Nigam, S., Honn, K.V., Marnett, L.J., and Walden, T.L.), ''Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury'', Springer, Boston, MA, 1993.
  • Kühn, T., Floegel, A., Sookthai, D., Johnson, T., Rolle-Kampczyk, U., Otto, W., Von Bergen, M., Boeing, H., and Kaaks, R., ''Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study'', BMC Medicine, 14, 13, 2016.
  • Shikama, Y., Kudo, Y., Ishimaru, N., and Funaki, M., ''Potential role of free fatty acids in the pathogenesis of periodontitis and primary Sjögren’s syndrome'', International Journal of Molecular Sciences, 18 (4), 836-844, 2017.
  • Agostoni, C., Moreno, L., and Shamir, R., ''Palmitic acid and health: introduction'', Critical Reviews in Food Science and Nutrition, 56(12), 1941, 2016.
  • Bermudez, M.A., Pereira, L., Fraile, C., Valerio, L., Balboa, M.A., and Balsinde, J. ''Roles of palmitoleic acid and its positional isomers, hypogeic and sapienic acids, in inflammation, metabolic diseases and cancer'', Cells, 11(14), 2146, 2022.
  • Diez, V.A., and Alvarez, A., ''Compositional and nutritional studies on two wild edible mushrooms from Northwest Spain'', Food Chemistry, 75(4), 417-422, 2021.
  • Zengin, G., Sarikurkcu, C., Aktumsek, A., Uysal, S., Ceylan, R., Anwar, F., and Solak, M.H., ''A Comparative fatty acid compositional analysis of different wild species of mushrooms from Turkey', Emirates Journal of Food and Agriculture, 27(7), 532-536, 2015.
  • Ergönül, P.E., Akata, I., Kalyoncu, F., and Ergönül, B., ''Fatty acid compositions of six wild edible mushroom species'', The Scientific World Journal, 2013, Article ID 163964, 2013.
  • Mocan, A., Fernandes, A., Barros, L., Crişan, G., Smiljkovic, M., Sokovic, M., and Ferreira, I.C.F.R., ''Chemical composition and bioactive properties of the wild mushroom Polyporus squamosus (Huds.) Fr: a study with samples from Romania'', Food & Function, 9, 160-170, 2018.
  • Çayan, F., Tel-Çayan, G., Özler, M.A., and Duru, M.E., ''Comparative study of fatty acids profile of wild mushroom species from Turkey'', Eurasian Journal of Analytical Chemistry, 12(3), 257-263, 2017.
  • Bengu, A.S. ''The fatty acid composition in some economic and wild edible mushrooms in Turkey'', Progress in Nutrition, 22, 185-192, 2020.
  • Isik, H. ''Fatty acid contents of three wild edible mushroom species'', Chemistry of Natural Compounds, 56, 1114-1116, 2020.
  • Olennikov, D.N., Agafonova, S.V., Penzina, T.A., and Borovski, G.B., ''Fatty acid composition of fourteen wood-decaying basidiomycete species growing in permafrost conditions'', Records of Natural Products, 8:2, 184-188, 2014.
  • Shahid, M., Fatima, H., Anjum, F., Riaz, M., Akhter, N., and Murtaza, M.A., ''Proximate composition, antioxidant activities and fatty acid profiling of selected mushrooms collected from Azad jammu and Kashmir'', Acta Poloniae Pharmaceutica Drug Research, 77, 145, 2020.
  • Eminoğlu, G., and Şenel, E., ''Chemometric approaches in sensory evaluation of dairy products'', Academic Food, 17(1), 102-110, 2019.
  • Jolliffe, I.T., and Cadima, J., ''Principal component analysis: A review and recent developments'', Philosophical Transactions of the Royal Society A, 374, 20150202, 2016.
  • Wenderski, T.A., Stratton, F., Bauer, R.A., Kopp, F., and Tan, D.S., ''Principal component analysis as a tool for library design: A case study investigating natural products, brand-name drugs, natural product-like libraries, and drug-like libraries'', Methods in Molecular Biology, 1263, 225-242, 2015.
  • Tokul-Olmez, O., Kaplaner, E., Ozturk, M., Ullah, Z., and Duru, M.E. ''Fatty acid profile of four Ganoderma species collected from various host trees with chemometric approach'', Biochemical Systematics and Ecology, 78, 91-97, 2018.
  • Wang, J., Li, W., Li, Z., Wu, W., and Tang, X. ''Analysis and evaluation of the characteristic taste components in Portobello mushroom'', Journal of Food Science, 83(6), 1542-1551, 2018.
  • Çayan, F., Tel-Çayan, G., Deveci, E., Duru, M.E. ''A comprehensive study on phenolic compounds and bioactive properties of five mushroom species via chemometric approach'', Journal of Food Processing and Preservation, 45, e15695, 2021.
  • Chen, L., Zhu, H., Li, Y., Zhang, Y., Zhang, W., Yang, L., Yin, H., Dong, C., and Wang, Y. ''Combining multielement analysis and chemometrics to trace the geographical origin of Thelephora ganbajun'', Journal of Food Composition and Analysis, 96, 103699, 2021.
There are 35 citations in total.

Details

Primary Language English
Subjects Analytical Biochemistry
Journal Section Articles
Authors

Fatih Çayan 0000-0003-2397-8071

Early Pub Date December 21, 2023
Publication Date December 31, 2023
Published in Issue Year 2023

Cite

APA Çayan, F. (2023). FATTY ACID COMPOSITION OF FIVE MUSHROOM SPECIES BY GC AND GC-MS WITH A CHEMOMETRIC APPROACH. Mugla Journal of Science and Technology, 9(2), 11-18. https://doi.org/10.22531/muglajsci.1281010
AMA Çayan F. FATTY ACID COMPOSITION OF FIVE MUSHROOM SPECIES BY GC AND GC-MS WITH A CHEMOMETRIC APPROACH. MJST. December 2023;9(2):11-18. doi:10.22531/muglajsci.1281010
Chicago Çayan, Fatih. “FATTY ACID COMPOSITION OF FIVE MUSHROOM SPECIES BY GC AND GC-MS WITH A CHEMOMETRIC APPROACH”. Mugla Journal of Science and Technology 9, no. 2 (December 2023): 11-18. https://doi.org/10.22531/muglajsci.1281010.
EndNote Çayan F (December 1, 2023) FATTY ACID COMPOSITION OF FIVE MUSHROOM SPECIES BY GC AND GC-MS WITH A CHEMOMETRIC APPROACH. Mugla Journal of Science and Technology 9 2 11–18.
IEEE F. Çayan, “FATTY ACID COMPOSITION OF FIVE MUSHROOM SPECIES BY GC AND GC-MS WITH A CHEMOMETRIC APPROACH”, MJST, vol. 9, no. 2, pp. 11–18, 2023, doi: 10.22531/muglajsci.1281010.
ISNAD Çayan, Fatih. “FATTY ACID COMPOSITION OF FIVE MUSHROOM SPECIES BY GC AND GC-MS WITH A CHEMOMETRIC APPROACH”. Mugla Journal of Science and Technology 9/2 (December 2023), 11-18. https://doi.org/10.22531/muglajsci.1281010.
JAMA Çayan F. FATTY ACID COMPOSITION OF FIVE MUSHROOM SPECIES BY GC AND GC-MS WITH A CHEMOMETRIC APPROACH. MJST. 2023;9:11–18.
MLA Çayan, Fatih. “FATTY ACID COMPOSITION OF FIVE MUSHROOM SPECIES BY GC AND GC-MS WITH A CHEMOMETRIC APPROACH”. Mugla Journal of Science and Technology, vol. 9, no. 2, 2023, pp. 11-18, doi:10.22531/muglajsci.1281010.
Vancouver Çayan F. FATTY ACID COMPOSITION OF FIVE MUSHROOM SPECIES BY GC AND GC-MS WITH A CHEMOMETRIC APPROACH. MJST. 2023;9(2):11-8.

5975f2e33b6ce.png
Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri ve Teknoloji Dergisi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.