Research Article
BibTex RIS Cite

DETERMINATION OF HEART ATTACK RISK ON PATIENTS DATA by DATA MINING APPLICATIONS

Year 2015, , 18 - 23, 07.04.2015
https://doi.org/10.22531/muglajsci.209994

Abstract

In this study, it has been investigated that feasibility of data mining which is used to extract meaningful knowledge in order to effect to decision making processes in health field. As an example to a case study, it has been tried to obtain that determining the factors which trigger heart attacks by defining common changes in blood values of patients whom have got heart attacks previously. Success of the analysis done has been measured by testing the obtained results on a group of patients. In the study, Apriori and GRI algorithms stemming from association rule algorithms have been used; success of rule sets created by these algorithms has been investigated by making several comparisons. As the result, several patterns meant to pre-signals determining heart attacks from data of the patient group which have the blood values have been put forth.

References

  • Şentürk, Z.K., The Diagnosis of Cancer with Data Mining, Master Thesis, Düzce University, Düzce, p.58, 2011.
  • Çakır, F., Akgöbek, Ö, Designing An Expert System in Data Mining, Academic Information 2009 Conference, Harran University, Şanlıurfa, Proceedings Book, p.801–806, 2009.
  • Savaş, S. Topaloğlu, N. ve Yılmaz, M., Data Mining and Practices in Turkey, İstanbul Commerce University, Journal of Natural and Applied Sciences, Year:11, No: 21, p. 1-23, 2012
  • Han, J. ve Kamber, M., Data Mining Concepts and Techniques, Morgan Kauffmann Publishers Inc., 1-35., 2006.
  • Azimli, M., Data Mining Applications in Medicine, Master Thesis, Gazi University, Ankara,. p.63, 2011.
  • Obenshain, K., Application of data mining techniques to healthcare data, Data Infect Control Hosp Epidemiol, 25: 690-695, 2004.
  • Koyuncugil, A.S. ve Özgülbaş, N. (2009) Data Mining: Use and Applications in Medicine and Health Services, Journal of Information Technologies, Vol.2, No:2, p.21-32, 2009.
  • Güleç, S., Global Risk of Cardiovascular Disease and Objectives, Turkish Society of Cardiology, Volume:37, No:2, p.1–10, 2009.
  • Doğan, Ş., Türkoğlu, İ., Yavuzkır, M., Heart Attack Detection From Cardiac Enzymes By Using Decision Trees, e-Journal of New World Sciences Academy, http://www.newwsa.com/download/sayi_icerikleri/TO63OBO.pdf , ISSN:1306-3111, Vol.: 2, Nu.: 3, p. 39–50, 2007.
  • Alataş, B., and Arslan, A., Mining of Fuzzy Association Rules with Genetic Algorithms, Journal of Polytechnic, Vol: 7, No: 4 pp. 269-276, 2004.
  • Agrawal, R., Imielinski, T. ve Swami, A., Data Mining Association Rules Between Sets of Items in Large Databases, Proceedings of The Acm Sigmod International Conference On Management of Data, Washington USA,. 1993.
  • Aggelis, V. ve Christodoulakis, D., E-Trans Association Rules for e-Banking Transactions, IV. International Conference on Decision Support for Telecommunications and Information, 2004, Warsaw Poland.
  • Akdağ, R., Aydın, S., Buzgan, T., Demirel, H. ve Gündüz, F., Cycling programs at health and basic health services in Turkey, T.C. Health Ministry Publications, Ankara, p.175, 2008.
  • Özdemir, L., Koçoğlu, G., Sümer, H., Nur, N., Polat, H., Aker, A., Bakıcı, Z., Frequency of Some Chronic Diseases and Risk Factors Among the Elderly People in Sivas, C. U. Journal of Medicine Faculty, 27 (3), p.89 – 94, 2005.

HASTA VERİLERİ ÜZERİNDE VERİ MADENCİLİĞİ UYGULAMASI İLE KALP KRİZİ RİSKİNİN TESPİTİ

Year 2015, , 18 - 23, 07.04.2015
https://doi.org/10.22531/muglajsci.209994

Abstract

Bu çalışmada, veri tabanları içerisinde, karar verme süreçlerine etki edebilecek anlamlı bilgileri çıkarmak için kullanılan veri madenciliğinin sağlık alanında uygulanabilirliği araştırılmıştır. Alan çalışmasına örnek olarak, kalp krizi geçiren hastaların kan değerlerinde meydana gelen ortak değişimler tespit edilerek kalp krizini tetikleyen faktörlerin tespitine çalışılmış; elde edilen sonuçlar hasta grubu üzerinde test edilerek yapılan analizin başarımı ölçülmüştür. Bu çalışmada birliktelik kuralı algoritmalarından Apriori ve Gri algoritmaları kullanılmış; bunların oluşturdukları kural kümelerinin başarımı, karşılaştırmalar yapılarak incelenmiştir. Gri algoritmasının Apriori’ye göre daha az kural ürettiği halde aynı başarımı gösterdiği tespit edilmiştir. Sonuç olarak kan değerleri verilen bir hasta grubu verilerinden kalp krizi riskinin tespiti için ön sinyaller anlamına gelen çeşitli desenler ortaya konmuştur

References

  • Şentürk, Z.K., The Diagnosis of Cancer with Data Mining, Master Thesis, Düzce University, Düzce, p.58, 2011.
  • Çakır, F., Akgöbek, Ö, Designing An Expert System in Data Mining, Academic Information 2009 Conference, Harran University, Şanlıurfa, Proceedings Book, p.801–806, 2009.
  • Savaş, S. Topaloğlu, N. ve Yılmaz, M., Data Mining and Practices in Turkey, İstanbul Commerce University, Journal of Natural and Applied Sciences, Year:11, No: 21, p. 1-23, 2012
  • Han, J. ve Kamber, M., Data Mining Concepts and Techniques, Morgan Kauffmann Publishers Inc., 1-35., 2006.
  • Azimli, M., Data Mining Applications in Medicine, Master Thesis, Gazi University, Ankara,. p.63, 2011.
  • Obenshain, K., Application of data mining techniques to healthcare data, Data Infect Control Hosp Epidemiol, 25: 690-695, 2004.
  • Koyuncugil, A.S. ve Özgülbaş, N. (2009) Data Mining: Use and Applications in Medicine and Health Services, Journal of Information Technologies, Vol.2, No:2, p.21-32, 2009.
  • Güleç, S., Global Risk of Cardiovascular Disease and Objectives, Turkish Society of Cardiology, Volume:37, No:2, p.1–10, 2009.
  • Doğan, Ş., Türkoğlu, İ., Yavuzkır, M., Heart Attack Detection From Cardiac Enzymes By Using Decision Trees, e-Journal of New World Sciences Academy, http://www.newwsa.com/download/sayi_icerikleri/TO63OBO.pdf , ISSN:1306-3111, Vol.: 2, Nu.: 3, p. 39–50, 2007.
  • Alataş, B., and Arslan, A., Mining of Fuzzy Association Rules with Genetic Algorithms, Journal of Polytechnic, Vol: 7, No: 4 pp. 269-276, 2004.
  • Agrawal, R., Imielinski, T. ve Swami, A., Data Mining Association Rules Between Sets of Items in Large Databases, Proceedings of The Acm Sigmod International Conference On Management of Data, Washington USA,. 1993.
  • Aggelis, V. ve Christodoulakis, D., E-Trans Association Rules for e-Banking Transactions, IV. International Conference on Decision Support for Telecommunications and Information, 2004, Warsaw Poland.
  • Akdağ, R., Aydın, S., Buzgan, T., Demirel, H. ve Gündüz, F., Cycling programs at health and basic health services in Turkey, T.C. Health Ministry Publications, Ankara, p.175, 2008.
  • Özdemir, L., Koçoğlu, G., Sümer, H., Nur, N., Polat, H., Aker, A., Bakıcı, Z., Frequency of Some Chronic Diseases and Risk Factors Among the Elderly People in Sivas, C. U. Journal of Medicine Faculty, 27 (3), p.89 – 94, 2005.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Journals
Authors

İlhan Tarımer

Fatih Elmas This is me

Publication Date April 7, 2015
Published in Issue Year 2015

Cite

APA Tarımer, İ., & Elmas, F. (2015). DETERMINATION OF HEART ATTACK RISK ON PATIENTS DATA by DATA MINING APPLICATIONS. Mugla Journal of Science and Technology, 1(1), 18-23. https://doi.org/10.22531/muglajsci.209994
AMA Tarımer İ, Elmas F. DETERMINATION OF HEART ATTACK RISK ON PATIENTS DATA by DATA MINING APPLICATIONS. MJST. April 2015;1(1):18-23. doi:10.22531/muglajsci.209994
Chicago Tarımer, İlhan, and Fatih Elmas. “DETERMINATION OF HEART ATTACK RISK ON PATIENTS DATA by DATA MINING APPLICATIONS”. Mugla Journal of Science and Technology 1, no. 1 (April 2015): 18-23. https://doi.org/10.22531/muglajsci.209994.
EndNote Tarımer İ, Elmas F (April 1, 2015) DETERMINATION OF HEART ATTACK RISK ON PATIENTS DATA by DATA MINING APPLICATIONS. Mugla Journal of Science and Technology 1 1 18–23.
IEEE İ. Tarımer and F. Elmas, “DETERMINATION OF HEART ATTACK RISK ON PATIENTS DATA by DATA MINING APPLICATIONS”, MJST, vol. 1, no. 1, pp. 18–23, 2015, doi: 10.22531/muglajsci.209994.
ISNAD Tarımer, İlhan - Elmas, Fatih. “DETERMINATION OF HEART ATTACK RISK ON PATIENTS DATA by DATA MINING APPLICATIONS”. Mugla Journal of Science and Technology 1/1 (April 2015), 18-23. https://doi.org/10.22531/muglajsci.209994.
JAMA Tarımer İ, Elmas F. DETERMINATION OF HEART ATTACK RISK ON PATIENTS DATA by DATA MINING APPLICATIONS. MJST. 2015;1:18–23.
MLA Tarımer, İlhan and Fatih Elmas. “DETERMINATION OF HEART ATTACK RISK ON PATIENTS DATA by DATA MINING APPLICATIONS”. Mugla Journal of Science and Technology, vol. 1, no. 1, 2015, pp. 18-23, doi:10.22531/muglajsci.209994.
Vancouver Tarımer İ, Elmas F. DETERMINATION OF HEART ATTACK RISK ON PATIENTS DATA by DATA MINING APPLICATIONS. MJST. 2015;1(1):18-23.

5975f2e33b6ce.png
Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri ve Teknoloji Dergisi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.