Research Article
BibTex RIS Cite

MATHEMATICAL MODELLING OF VACUUM DRYING CHARACTERISTICS FOR MAHLAB PUREE

Year 2018, , 242 - 247, 19.12.2018
https://doi.org/10.22531/muglajsci.447100

Abstract

Mahlab has bitter taste,
strong aroma and high anthocyanin content and it might be used for producing
different fruit snack bars which the drying step is very important for the
manufacture. In this article, mathematical modelling of the drying of mahlab
puree in vacuum dryer at different temperatures is investigated. Thin-layer
drying processes were performed using a temperature controlled vacuum drying
oven at 50, 60 and 70°C under 50 mbar absolute pressure and the weight data
were collected at certain time intervals. The drying curves were fitted to
eight different drying models. In this curve fitting, nonlinear regression
analysis was used to evaluate the parameters of the selected models.
Additionally, effective diffusion coefficient was obtained from diffusion model
of Fick and the activation energy was determined using Arrhenius equation.
According to statistical analysis results for three drying temperatures,
Midilli et al. drying model has shown a better fit to the experimental drying
data of mahlab puree. The effective diffusion coefficients were found as
1.71x10-10, 6.21x10-10 and 8.64x10-10 m2/s
at 50, 60, and 70o
C, respectively. The activation energy that
expresses the temperature dependency of the diffusion coefficients was
calculated as 75.2 kJ/mol.

References

  • [1] Margetts BM., Martinez JA., Saba A., Holm L. and Kearney M., “Definitions of ‘healthy’ eating: A pan–EU survey for consumer attitudes to food nutrition and health”, Eur. J. Clin. Nutr. 51:23–29, 1997.
  • [2] Nicoli MC., Anese M. and Parpinelx M. “Influence of processing on the antioxidant properties of fruit and vegetables”, Trends Food Sci. Technol. 10:94–100, 1999.
  • [3] Vadivambal R. and Jaya DS. “Changes in quality of microwave-treated agricultural products-a review”, Biosystems. Eng. 98:1–16, 2007.
  • [4] Ozturk I., Karaman S., Baslar M., Cam M., Caliskan O., Sagdic O. and Yalcin H., “Aroma, sugar and anthocyanin profile of fruit and seed of mahlab (Prunus mahaleb L.): Optimization of bioactive compounds extraction by simplex lattice mixture design”, Food Analytical Methods. 7(4), 761-773, 2014.
  • [5] Diamante LM. and Munro PA., “Mathematical modelling of the thin layer solar drying of sweet potato slices”, Solar Energy. 51. 271-276, 1993.
  • [6] Liu Q. and Bakker-Arkema FW., “Stochastic modeling of grain drying: Part 2. Model development”, Journal of Agricultural Engineering Research. 66. 275-280, 1997.
  • [7] Doymaz I. and Pala M., “Hot-air drying characteristics of red pepper”, Journal of Food Engineering. Volume 55. Issue 4. December 2002. Pages 331-335, 2002.
  • [8] Sacilik, K., Keskin, R. and Elicin, AK., “Mathematical modelling of solar tunnel drying of thin layer organic tomato”, Journal of Food Engineering, 73(3): 231-238, 2006.
  • [9] Okos, MR., Narsimhan, G., Singh, RK. and Weitnauer, AC., Food dehydration. In. D.R. Heldman. and D. B. Lund (Eds.). Handbook of Food Engineering. 462, 1992.
  • [10] Ayensu A., “Dehydration of food crops using solar dryer with convective heat flow”, Solar Energy. 59.121-126,1997.
  • [11] Doymaz I., “Convective air drying characteristics of thin layer carrots”, Journal of Food Engineering. 61. 359-364, 2004.
  • [12] Karathanos, VT. and Belessiotis, VG., “Application of a thin layer equation to drying data of fresh and semi-dried fruits”, Journal of Agricultural Engineering Research. 74. 335-361, 1999.
  • [13] Ozdemir, M. and Devres, YO., “The thin layer drying characteristics of hazelnuts during roasting”, Journal of Food Engineering. 42. 225-233, 1999.
  • [14] Madamba, PS., Driscoll, RH. and Buckle, KA. “The thin-layer drying characteristics of garlic slices”, Journal of Food Engineering, 29(1): 7597, 1996.
  • [15] Wang, Z., Sun, J., Liao, X., Chen, F., Zhao, G., Wu, J. and Hu, X., “Mathematical modeling on hot air drying of thin layer apple pomace”, Food Research International. 40(1): 39-46,2007.
  • [16] Avhad, MR. and Marchetti, JM., “Mathematical modelling of the drying kinetics of Hass avocado seeds”, Industrial Crops and Products, 91: 76-87,2016.
  • [17] Zhu, A. and Xinqi, S., “The model and mass transfer characteristics of convection drying of peach slices”, International Journal of Heat and Mass Transfer, 72: 345-351, 2014.
  • [18] Goyal, RK., Kingsly, ARP., Manikantan, MR. and Ilyas, SM., “Mathematical modelling of thin layedrying kinetics of plum in a tunnel dryer”, Journal of Food Engineering, 79(1): 176-180, 2007.
  • [19] Wang, CY. and Singh, RP., “A single layer drying equation for rough rice”, American Society of Agricultural Engineers, St. Joseph, MI, 78, 3001, 1978.
  • [20] Verma., LR., Bucklin, RA., Endan, JB. and Wratten, FT., “Effects of drying air parameters on rice drying models”, Transactions of the American Society of Agricultural Engineers, 28(1): 296301, 1985.
  • [21] Midilli, A., Kucuk, H. and Yapar, Z., “A new model for single-layer drying”, Drying Technology. 20(7). 1503-1513, 2002.
  • [22] Gurlek, G., Ozbalta, N. and Gungor, A., “Solar tunnel drying characteristics and mathematical modelling of tomato”, Journal of Thermal Science and Technology. 29. 15-23, 2009.
  • [23] Demir, V., Gunhan, T., Yagcioglu, AK. and Degirmencioglu, A., “Mathematical modelling and the determination of some quality parameters of air-dried bay leaves”, Biosystems Engineering, 88. 325-335,2004.
  • [24] Akpinar, E., Midilli, A. and Bicer, Y., “Single layer drying behaviour of potato slices in a convective cyclone dryer and mathematical modeling”, Energy Conversion and Management, 44 (10). 1689-1705,2003.
  • [25] Kaya, A., Aydin, O. and Demirtaş, C., “Concentration boundry conditions in the theoretical analysis of convective drying process”, Journal of Food Process Engineering. 30. 565-577,2007.
  • [26] Doymaz, I., “Air-drying characteristics of tomatoes”, Journal of Food Engineering. 78. 1291-1297,2007.
  • [27] Erbay, Z. and Içier, F., “A review of thin layer drying of foods: theory, modeling and experimental results”, Critical Reviews in Food Science and Nutrition. 50(5): 441-464, 2010.
  • [28] Ibanoğlu, Ş. and Maskan, M., “Effect of cooking on the drying behaviour of tarhana dough a wheat flour–yoghurt mixture”, Journal of Food Engineering. 54(2): 119-123,2002.
  • [29] Celma, AR., Rojas, S. and Lopez-Rodriguez, F., “Mathematical modelling of thin-layer infrared drying of wet olive husk”, Chemical Engineering and Processing: Process Intensification. 47(9): 1810-1818, 2008.
  • [30] Maskan, A., Kaya, S. and Maskan, M., “Hot air and sun drying of grape leather (pestil)”, Journal of Food Engineering. 54(1): 81-88, 2002.

MAHLEP PÜRESİNİN VAKUM KURUTMA KARAKTERİSTİKLERİNİN MATEMATİKSEL MODELLENMESİ

Year 2018, , 242 - 247, 19.12.2018
https://doi.org/10.22531/muglajsci.447100

Abstract

Mahlep, acımsı tada,
güçlü aromaya ve yüksek antosiyanin içeriğine sahiptir ve bu özellikleriyle,
üretim aşamasında kurutmanın önem kazandığı aperatif tüketime yönelik meyve
barlarının üretimi için kullanılabilmektedir. Bu çalışmada, farklı
sıcaklıklarda gerçekleştirilen mahlep püresinin vakumlu kurutucudaki kurutma
işleminin matematiksel modellenmesi incelenmiştir. İnce tabaka kurutma işlemi,
sıcaklık kontrollü vakumlu kurutma fırını kullanılarak 50 mbar basınç altında,
50, 60 ve 70°C farklı kurutma sıcaklıklarında gerçekleştirilmiş olup, kütle
kaybı belirli aralıklarla ölçülmüştür. Kurutma eğrileri sekiz farklı kurutma
modeline göre elde edilmiştir. Matematiksel modellemede, seçilen modellerin parametrelerini
değerlendirmek için doğrusal olmayan regresyon analizi kullanılmıştır. Ayrıca
Fick'in difüzyon modelinden etkin difüzyon katsayısı elde edilmiş ve aktivasyon
enerjisi Arrhenius denklemi kullanılarak belirlenmiştir. Üç farklı kurutma
sıcaklığı için istatistiksel analiz sonuçlarına göre Midilli ve ark. kurutma
modeli, mahlab püresinin deneysel kurutma verilerine en iyi uyum gösteren model
olmuştur. Kurutma sıcaklıkları olan 50, 60 ve 70oC için etkin
difüzyon katsayısı sırasıyla 1.71x10-10, 6.21x10-10 ve
8.64x10-10 m2
/s olarak bulunmuştur. Difüzyon
katsayılarının sıcaklığa olan bağlılığını ifade eden aktivasyon enerjisi ise
75.2 kJ/mol olarak hesaplanmıştır.

References

  • [1] Margetts BM., Martinez JA., Saba A., Holm L. and Kearney M., “Definitions of ‘healthy’ eating: A pan–EU survey for consumer attitudes to food nutrition and health”, Eur. J. Clin. Nutr. 51:23–29, 1997.
  • [2] Nicoli MC., Anese M. and Parpinelx M. “Influence of processing on the antioxidant properties of fruit and vegetables”, Trends Food Sci. Technol. 10:94–100, 1999.
  • [3] Vadivambal R. and Jaya DS. “Changes in quality of microwave-treated agricultural products-a review”, Biosystems. Eng. 98:1–16, 2007.
  • [4] Ozturk I., Karaman S., Baslar M., Cam M., Caliskan O., Sagdic O. and Yalcin H., “Aroma, sugar and anthocyanin profile of fruit and seed of mahlab (Prunus mahaleb L.): Optimization of bioactive compounds extraction by simplex lattice mixture design”, Food Analytical Methods. 7(4), 761-773, 2014.
  • [5] Diamante LM. and Munro PA., “Mathematical modelling of the thin layer solar drying of sweet potato slices”, Solar Energy. 51. 271-276, 1993.
  • [6] Liu Q. and Bakker-Arkema FW., “Stochastic modeling of grain drying: Part 2. Model development”, Journal of Agricultural Engineering Research. 66. 275-280, 1997.
  • [7] Doymaz I. and Pala M., “Hot-air drying characteristics of red pepper”, Journal of Food Engineering. Volume 55. Issue 4. December 2002. Pages 331-335, 2002.
  • [8] Sacilik, K., Keskin, R. and Elicin, AK., “Mathematical modelling of solar tunnel drying of thin layer organic tomato”, Journal of Food Engineering, 73(3): 231-238, 2006.
  • [9] Okos, MR., Narsimhan, G., Singh, RK. and Weitnauer, AC., Food dehydration. In. D.R. Heldman. and D. B. Lund (Eds.). Handbook of Food Engineering. 462, 1992.
  • [10] Ayensu A., “Dehydration of food crops using solar dryer with convective heat flow”, Solar Energy. 59.121-126,1997.
  • [11] Doymaz I., “Convective air drying characteristics of thin layer carrots”, Journal of Food Engineering. 61. 359-364, 2004.
  • [12] Karathanos, VT. and Belessiotis, VG., “Application of a thin layer equation to drying data of fresh and semi-dried fruits”, Journal of Agricultural Engineering Research. 74. 335-361, 1999.
  • [13] Ozdemir, M. and Devres, YO., “The thin layer drying characteristics of hazelnuts during roasting”, Journal of Food Engineering. 42. 225-233, 1999.
  • [14] Madamba, PS., Driscoll, RH. and Buckle, KA. “The thin-layer drying characteristics of garlic slices”, Journal of Food Engineering, 29(1): 7597, 1996.
  • [15] Wang, Z., Sun, J., Liao, X., Chen, F., Zhao, G., Wu, J. and Hu, X., “Mathematical modeling on hot air drying of thin layer apple pomace”, Food Research International. 40(1): 39-46,2007.
  • [16] Avhad, MR. and Marchetti, JM., “Mathematical modelling of the drying kinetics of Hass avocado seeds”, Industrial Crops and Products, 91: 76-87,2016.
  • [17] Zhu, A. and Xinqi, S., “The model and mass transfer characteristics of convection drying of peach slices”, International Journal of Heat and Mass Transfer, 72: 345-351, 2014.
  • [18] Goyal, RK., Kingsly, ARP., Manikantan, MR. and Ilyas, SM., “Mathematical modelling of thin layedrying kinetics of plum in a tunnel dryer”, Journal of Food Engineering, 79(1): 176-180, 2007.
  • [19] Wang, CY. and Singh, RP., “A single layer drying equation for rough rice”, American Society of Agricultural Engineers, St. Joseph, MI, 78, 3001, 1978.
  • [20] Verma., LR., Bucklin, RA., Endan, JB. and Wratten, FT., “Effects of drying air parameters on rice drying models”, Transactions of the American Society of Agricultural Engineers, 28(1): 296301, 1985.
  • [21] Midilli, A., Kucuk, H. and Yapar, Z., “A new model for single-layer drying”, Drying Technology. 20(7). 1503-1513, 2002.
  • [22] Gurlek, G., Ozbalta, N. and Gungor, A., “Solar tunnel drying characteristics and mathematical modelling of tomato”, Journal of Thermal Science and Technology. 29. 15-23, 2009.
  • [23] Demir, V., Gunhan, T., Yagcioglu, AK. and Degirmencioglu, A., “Mathematical modelling and the determination of some quality parameters of air-dried bay leaves”, Biosystems Engineering, 88. 325-335,2004.
  • [24] Akpinar, E., Midilli, A. and Bicer, Y., “Single layer drying behaviour of potato slices in a convective cyclone dryer and mathematical modeling”, Energy Conversion and Management, 44 (10). 1689-1705,2003.
  • [25] Kaya, A., Aydin, O. and Demirtaş, C., “Concentration boundry conditions in the theoretical analysis of convective drying process”, Journal of Food Process Engineering. 30. 565-577,2007.
  • [26] Doymaz, I., “Air-drying characteristics of tomatoes”, Journal of Food Engineering. 78. 1291-1297,2007.
  • [27] Erbay, Z. and Içier, F., “A review of thin layer drying of foods: theory, modeling and experimental results”, Critical Reviews in Food Science and Nutrition. 50(5): 441-464, 2010.
  • [28] Ibanoğlu, Ş. and Maskan, M., “Effect of cooking on the drying behaviour of tarhana dough a wheat flour–yoghurt mixture”, Journal of Food Engineering. 54(2): 119-123,2002.
  • [29] Celma, AR., Rojas, S. and Lopez-Rodriguez, F., “Mathematical modelling of thin-layer infrared drying of wet olive husk”, Chemical Engineering and Processing: Process Intensification. 47(9): 1810-1818, 2008.
  • [30] Maskan, A., Kaya, S. and Maskan, M., “Hot air and sun drying of grape leather (pestil)”, Journal of Food Engineering. 54(1): 81-88, 2002.
There are 30 citations in total.

Details

Primary Language English
Journal Section Journals
Authors

Gökhan Gürlek 0000-0001-5324-1818

Hilal Isleroglu 0000-0002-4338-9242

Publication Date December 19, 2018
Published in Issue Year 2018

Cite

APA Gürlek, G., & Isleroglu, H. (2018). MATHEMATICAL MODELLING OF VACUUM DRYING CHARACTERISTICS FOR MAHLAB PUREE. Mugla Journal of Science and Technology, 4(2), 242-247. https://doi.org/10.22531/muglajsci.447100
AMA Gürlek G, Isleroglu H. MATHEMATICAL MODELLING OF VACUUM DRYING CHARACTERISTICS FOR MAHLAB PUREE. MJST. December 2018;4(2):242-247. doi:10.22531/muglajsci.447100
Chicago Gürlek, Gökhan, and Hilal Isleroglu. “MATHEMATICAL MODELLING OF VACUUM DRYING CHARACTERISTICS FOR MAHLAB PUREE”. Mugla Journal of Science and Technology 4, no. 2 (December 2018): 242-47. https://doi.org/10.22531/muglajsci.447100.
EndNote Gürlek G, Isleroglu H (December 1, 2018) MATHEMATICAL MODELLING OF VACUUM DRYING CHARACTERISTICS FOR MAHLAB PUREE. Mugla Journal of Science and Technology 4 2 242–247.
IEEE G. Gürlek and H. Isleroglu, “MATHEMATICAL MODELLING OF VACUUM DRYING CHARACTERISTICS FOR MAHLAB PUREE”, MJST, vol. 4, no. 2, pp. 242–247, 2018, doi: 10.22531/muglajsci.447100.
ISNAD Gürlek, Gökhan - Isleroglu, Hilal. “MATHEMATICAL MODELLING OF VACUUM DRYING CHARACTERISTICS FOR MAHLAB PUREE”. Mugla Journal of Science and Technology 4/2 (December 2018), 242-247. https://doi.org/10.22531/muglajsci.447100.
JAMA Gürlek G, Isleroglu H. MATHEMATICAL MODELLING OF VACUUM DRYING CHARACTERISTICS FOR MAHLAB PUREE. MJST. 2018;4:242–247.
MLA Gürlek, Gökhan and Hilal Isleroglu. “MATHEMATICAL MODELLING OF VACUUM DRYING CHARACTERISTICS FOR MAHLAB PUREE”. Mugla Journal of Science and Technology, vol. 4, no. 2, 2018, pp. 242-7, doi:10.22531/muglajsci.447100.
Vancouver Gürlek G, Isleroglu H. MATHEMATICAL MODELLING OF VACUUM DRYING CHARACTERISTICS FOR MAHLAB PUREE. MJST. 2018;4(2):242-7.

5975f2e33b6ce.png
Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri ve Teknoloji Dergisi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.