Research Article
BibTex RIS Cite

PREDICTION OF NUSSELT NUMBER OF RECTANGULAR FINS USING ARTIFICIAL NEURAL NETWORK MODEL

Year 2019, , 13 - 22, 11.12.2019
https://doi.org/10.22531/muglajsci.529193

Abstract

In the passive heat transfer enhancement methods, there are several parameters which need to be optimized to maximize the heat transfer coefficient and Nusselt number while minimizing the pressure drop. For this purpose, empirical correlations are generated by experimental and numerical studies. In this study, a heat transfer analysis of rectangular fins with experimental data by an artificial neural network approach is performed. Artificial Neural Network method is compared with the classical regression model. Different networks with a different number of neurons in the hidden layer and several training algorithms are tested for the defined problem. The results show that the ANN model is found faster and more accurate than conventional techniques if the optimum architecture is generated and convenient training algorithm is chosen for the specific problem. For this   problem, 10-5-1 network with Bayesian Regularization training algorithm is selected as the best scenario with 7.6 % mean absolute percentage error (MAPE) and 0.029 RMSE value while maximum MAPE value is reached to 56.3 % with Levenberg- Marquardt training algorithm and with 10-12-1 network.

References

  • 1] M. Sheikholeslami, M.G. Bandpy, D.D: Ganji,, Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices, Renewable and Sustainable Energy Reviews, (49) (2015) 444-649.
  • [2] A. Kraus, Ab., Azız, , J. Welty, Extended Surface Heat Transfer, USA: John Wıley &Sons, (20011).
  • [3] T.M., Jeng, S.C Tzeng,.,Pressure Drop and Heat Transfer of Square Pin-Fin Arrays in in-Line and Staggered Arrangements, International Journal of Heat and Mass Transfer, (50) (2007) 2364-2375.
  • [4] K.E., Starner, Jr H.N. McManus, An Experimental Investigation of Free Convection Heat Transfer From Rectangular Fin Arrays”, Journal of Heat Transfer, Series C, (85) (1963) 273-278.
  • [5], C.K., Tan, J. Ward, S.J. Wilcox, R. Payne, Artificial Neural Network Modelling of the Performance of a Compact Heat Exchanger, Applied Thermal Engineering, (29) (2009) 3609-3617.
  • [6] C. Turk, S. Aradag, S. Kakac, Experimental Analysis of a mixed-plate gasketed plate heat exchanger and artificial neural net estimations of the performance as an alternative to classicalcorrelations, International Journal of Thermal Sciences, (109) (2016) 263-269.
  • [7 ]Y. Islamoglu, A. Kurt,, Heat Transfer Analysis Using ANNs with Experimental Data for Air Flowing in Corrugated Channels,International Journal of Heat and Mass Transfer, (47) (2004) 1361-1365.
  • [8] Y. Islamoglu, Y., A. Kurt, A. Parmaksızoğlu, Performance Prediction for non-adiabatic Capillary Tube Suction Line Heat Exchanger: An Artificial Neural Network Approach, Energy Conversion and Management, (46) (2005) 223-232.
  • [9] G. Xie, B. Sunden, Q. Wang, L. Tang,, Performance Predictions of Laminar and Turbulent Heat Transfer and Fluid Flow of Heat Exchangers Having Large Tube-Diameter and Large Tube-Row by Artificial Neural Networks, International Journal of Heat and Mass Transfer, (52) (2009), 2484-2497.
  • [10] G.N Xie., Q.W. Wang, M. Zeng, L.Q., Loo, Heat Transfer Analysis for Shell-and- Tube Heat Exchangers with Experimental Data by Artificial Neural Networks Approach, Applied Thermal Engineering, (27) (2007), 1096-1104.
  • [11] S., Chen, J., Mao, F., Chen, P., Hou, Y. Li, Development of ANN Model for Depth Prediction of Vertical Ground Heat Exchanger, International Journal of Heat and Mass Transfer, (117) (2018), 617-626.
  • [12] M.H., Shojaeefard, J., Zare, A Tabatabaei, H. Mohammadbeigi, Evaluating Different Types of Artificial Neural Network Structures for Performance Prediction of Compact Heat Exchanger, Neural Comput & Applic, (28) (2017), 3953-3965.
  • [13] E. Ayli, O. Bayer, S. Aradag, Experimental Investigation and CFD analysis of Rectangular Profile FINS in square channel for Forced Convection Regimes, International Journal of Thermal Sciences, (109) (2016), 279-290.
  • [14] E., Ayli, F Kiyici,. O., Bayer, S., Aradag, Experimental investigation of heat transfer and pressure drop over rectangular profile fins placed in a square channel, Convective Heat and Mass Transfer (CONV 2014), June 2014, Turkey, (2014).
  • [15] B.R., Munson, D.F., Young, T.H., Okiishi, Fundementals of Fluid Mechanics,5th Edition, John Wiley&Sons, (2006).
  • [16] D., Chatterjee, G., Biswas, S., Amiroudine, Numerical investigation of forced convection heat transfer in unsteady flow past a row of square cylinders, International Journal of Heat and Fluid Flow, (30) (2009) 1114-1128.
  • [17] Ç., Elmas, Yapay Sinir Ağları (Kuram, Mimari, Eğitim, Uygulama), 1. Baskı,Seçkin Yayıncılık, Ankara, (2003)
  • [18] C., Turk. Yapay Sinir Ağları Yardımıyla Isı Değiştirgeci Modellemesi, MSc Thesis, TOBB University of Mechanical Engineering, Ankara, Turkey, (2013) [19] W.J.Gang, JB Wang, Predictive ANN Models of Ground Heat Exchanger fort he Control of Hybrid Ground Source Heat Pump Systems, Applied Energy, (112,) (2013) 1146-1153.
  • [20] M.H. Beale , M.T. Hagan, H.B. Demuth, Neural Network Toolbox, User’s Guide, Mathworks, (2018).
  • [21] M, Sen.., K.T., Yang, Application of Artificial Neural Networks and Genetic Algortihms in Thermal Engineering, The CRC Handbook of Thermal Engineering, CRC Press, Boca Raton, FL(2000)

PREDICTION OF NUSSELT NUMBER OF RECTANGULAR FINS USING ARTIFICIAL NEURAL NETWORK MODEL

Year 2019, , 13 - 22, 11.12.2019
https://doi.org/10.22531/muglajsci.529193

Abstract

Pasif
ısı transferi iyileştirme metodlarında ısı transferi kat sayısı ve Nusselt
sayısını maximize ederken, basınç düşümünü minimize eden yaklaşımı tespit
edebilmek için bir çok parametrenin optimizasyonunun yapılması gerekmektedir.
Bu sebepten ötürü, deneysel ve sayısal çalışmalara bağlı olarak ampirik
korelasyonlar elde edilmektedir. Bu çalışmada dikdörtgensel finlerin ısı
transferi davranışı deneysel ve yapay sinir ağları metodları ile ortaya
konmuştur. Yapay sinir ağları metodolojisi ile elde edilen sonuçlar korelasyon
ile kıyaslanmıştır.  Ayrıca, tanımlanan
problem için yapay sinir ağı uygulamasında farklı eğitim algoritmalarının ve
katman sayısının sonuçlar üzerindeki etkisi araştırılmıştır. Elde edilen
sonuçlara göre YSA yöntemi, korelasyon yönteminden daha hızlı ve daha doğru
sonuç vermektedir. Diğer yandan YSA yaklaşımının doğruluğunun arttırılması için
uygun eğitim algoritmasının seçimi, uygun katman sayısının tespiti yani uygun
mimarinin elde edilmesi önem arz etmektedir. 
Tanımlanan bu problem için, 10-5-1 ağına sahip Bayesian Regularization
algoritması %7.6 ortalama yüzde hata ve 0.029 RMSE ile iyi senaryo olarak
belirlenmiştir. Maximum ortalama hata %56.3 ile 
Levenberg- Marquardt algoritmasında 10-12-1 ağı ile elde edilmiştir. 

References

  • 1] M. Sheikholeslami, M.G. Bandpy, D.D: Ganji,, Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices, Renewable and Sustainable Energy Reviews, (49) (2015) 444-649.
  • [2] A. Kraus, Ab., Azız, , J. Welty, Extended Surface Heat Transfer, USA: John Wıley &Sons, (20011).
  • [3] T.M., Jeng, S.C Tzeng,.,Pressure Drop and Heat Transfer of Square Pin-Fin Arrays in in-Line and Staggered Arrangements, International Journal of Heat and Mass Transfer, (50) (2007) 2364-2375.
  • [4] K.E., Starner, Jr H.N. McManus, An Experimental Investigation of Free Convection Heat Transfer From Rectangular Fin Arrays”, Journal of Heat Transfer, Series C, (85) (1963) 273-278.
  • [5], C.K., Tan, J. Ward, S.J. Wilcox, R. Payne, Artificial Neural Network Modelling of the Performance of a Compact Heat Exchanger, Applied Thermal Engineering, (29) (2009) 3609-3617.
  • [6] C. Turk, S. Aradag, S. Kakac, Experimental Analysis of a mixed-plate gasketed plate heat exchanger and artificial neural net estimations of the performance as an alternative to classicalcorrelations, International Journal of Thermal Sciences, (109) (2016) 263-269.
  • [7 ]Y. Islamoglu, A. Kurt,, Heat Transfer Analysis Using ANNs with Experimental Data for Air Flowing in Corrugated Channels,International Journal of Heat and Mass Transfer, (47) (2004) 1361-1365.
  • [8] Y. Islamoglu, Y., A. Kurt, A. Parmaksızoğlu, Performance Prediction for non-adiabatic Capillary Tube Suction Line Heat Exchanger: An Artificial Neural Network Approach, Energy Conversion and Management, (46) (2005) 223-232.
  • [9] G. Xie, B. Sunden, Q. Wang, L. Tang,, Performance Predictions of Laminar and Turbulent Heat Transfer and Fluid Flow of Heat Exchangers Having Large Tube-Diameter and Large Tube-Row by Artificial Neural Networks, International Journal of Heat and Mass Transfer, (52) (2009), 2484-2497.
  • [10] G.N Xie., Q.W. Wang, M. Zeng, L.Q., Loo, Heat Transfer Analysis for Shell-and- Tube Heat Exchangers with Experimental Data by Artificial Neural Networks Approach, Applied Thermal Engineering, (27) (2007), 1096-1104.
  • [11] S., Chen, J., Mao, F., Chen, P., Hou, Y. Li, Development of ANN Model for Depth Prediction of Vertical Ground Heat Exchanger, International Journal of Heat and Mass Transfer, (117) (2018), 617-626.
  • [12] M.H., Shojaeefard, J., Zare, A Tabatabaei, H. Mohammadbeigi, Evaluating Different Types of Artificial Neural Network Structures for Performance Prediction of Compact Heat Exchanger, Neural Comput & Applic, (28) (2017), 3953-3965.
  • [13] E. Ayli, O. Bayer, S. Aradag, Experimental Investigation and CFD analysis of Rectangular Profile FINS in square channel for Forced Convection Regimes, International Journal of Thermal Sciences, (109) (2016), 279-290.
  • [14] E., Ayli, F Kiyici,. O., Bayer, S., Aradag, Experimental investigation of heat transfer and pressure drop over rectangular profile fins placed in a square channel, Convective Heat and Mass Transfer (CONV 2014), June 2014, Turkey, (2014).
  • [15] B.R., Munson, D.F., Young, T.H., Okiishi, Fundementals of Fluid Mechanics,5th Edition, John Wiley&Sons, (2006).
  • [16] D., Chatterjee, G., Biswas, S., Amiroudine, Numerical investigation of forced convection heat transfer in unsteady flow past a row of square cylinders, International Journal of Heat and Fluid Flow, (30) (2009) 1114-1128.
  • [17] Ç., Elmas, Yapay Sinir Ağları (Kuram, Mimari, Eğitim, Uygulama), 1. Baskı,Seçkin Yayıncılık, Ankara, (2003)
  • [18] C., Turk. Yapay Sinir Ağları Yardımıyla Isı Değiştirgeci Modellemesi, MSc Thesis, TOBB University of Mechanical Engineering, Ankara, Turkey, (2013) [19] W.J.Gang, JB Wang, Predictive ANN Models of Ground Heat Exchanger fort he Control of Hybrid Ground Source Heat Pump Systems, Applied Energy, (112,) (2013) 1146-1153.
  • [20] M.H. Beale , M.T. Hagan, H.B. Demuth, Neural Network Toolbox, User’s Guide, Mathworks, (2018).
  • [21] M, Sen.., K.T., Yang, Application of Artificial Neural Networks and Genetic Algortihms in Thermal Engineering, The CRC Handbook of Thermal Engineering, CRC Press, Boca Raton, FL(2000)
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Journals
Authors

Ece Ayli 0000-0002-6209-161X

Publication Date December 11, 2019
Published in Issue Year 2019

Cite

APA Ayli, E. (2019). PREDICTION OF NUSSELT NUMBER OF RECTANGULAR FINS USING ARTIFICIAL NEURAL NETWORK MODEL. Mugla Journal of Science and Technology, 5(2), 13-22. https://doi.org/10.22531/muglajsci.529193
AMA Ayli E. PREDICTION OF NUSSELT NUMBER OF RECTANGULAR FINS USING ARTIFICIAL NEURAL NETWORK MODEL. MJST. December 2019;5(2):13-22. doi:10.22531/muglajsci.529193
Chicago Ayli, Ece. “PREDICTION OF NUSSELT NUMBER OF RECTANGULAR FINS USING ARTIFICIAL NEURAL NETWORK MODEL”. Mugla Journal of Science and Technology 5, no. 2 (December 2019): 13-22. https://doi.org/10.22531/muglajsci.529193.
EndNote Ayli E (December 1, 2019) PREDICTION OF NUSSELT NUMBER OF RECTANGULAR FINS USING ARTIFICIAL NEURAL NETWORK MODEL. Mugla Journal of Science and Technology 5 2 13–22.
IEEE E. Ayli, “PREDICTION OF NUSSELT NUMBER OF RECTANGULAR FINS USING ARTIFICIAL NEURAL NETWORK MODEL”, MJST, vol. 5, no. 2, pp. 13–22, 2019, doi: 10.22531/muglajsci.529193.
ISNAD Ayli, Ece. “PREDICTION OF NUSSELT NUMBER OF RECTANGULAR FINS USING ARTIFICIAL NEURAL NETWORK MODEL”. Mugla Journal of Science and Technology 5/2 (December 2019), 13-22. https://doi.org/10.22531/muglajsci.529193.
JAMA Ayli E. PREDICTION OF NUSSELT NUMBER OF RECTANGULAR FINS USING ARTIFICIAL NEURAL NETWORK MODEL. MJST. 2019;5:13–22.
MLA Ayli, Ece. “PREDICTION OF NUSSELT NUMBER OF RECTANGULAR FINS USING ARTIFICIAL NEURAL NETWORK MODEL”. Mugla Journal of Science and Technology, vol. 5, no. 2, 2019, pp. 13-22, doi:10.22531/muglajsci.529193.
Vancouver Ayli E. PREDICTION OF NUSSELT NUMBER OF RECTANGULAR FINS USING ARTIFICIAL NEURAL NETWORK MODEL. MJST. 2019;5(2):13-22.

5975f2e33b6ce.png
Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri ve Teknoloji Dergisi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.