Research Article
BibTex RIS Cite

IRAK’TA PARABOLİK OLUK TİPİ GÜNEŞ KOLLEKTÖRLÜ HİBRİT BUHAR SANTRALİNİN TERMODİNAMİK ANALİZİ VE SİMÜLASYONU

Year 2019, , 1 - 12, 11.12.2019
https://doi.org/10.22531/muglajsci.537102

Abstract

Pek çok ülkede elektrik üretimi çevre için zararlı olmalarına rağmen, büyük oranda fosil yakıtla çalışan termik santrallarla yapılmaktadır.  Güneş enerjisinin bu halihazırdaki termik santrallarla entege edilmesi sureti ile hibrit şeklilde enerji üretimi birçok açıdan oldukça akılcı ve ekonomiktir. Bu çalışmada parabolik oluk tipi güneş kollektörlü hibrit buhar santralinin termodinamik analizi yapılmıştır. Tasarım süreci, solar kollektörlerde kullanılacak sıvının seçimini, kollektör sahasının ölçüleri ve kullanılacak kollektör sayısının tayinini, kollektör ve buhar santralını bağlayan ısı eşanjörünün ön tasarımını ve son olarak da hibrit sistemin termal analizini içermektedir. Nümerik modelin doğrulanmasının ardından buhar santralı ve hibrit santralın simülasyonları yapılmış, güç artışı, verim iyileşmesi, yakıt tasarrufu ve çevresel etkiler incelenmiştir. Ayrıca güneş kollektörü sahasında üretilebilecek ekstra enerji miktarları hesaplanmış ve faydalı enerji, ısı kaybı faktörü, solar akışkan sıcaklıkları, cam ve soğurucu boru sıcaklıkları hesaplanmış ve birbirleri ile kıyaslanmıştır. Son olarak basit ekonomik analiz yapılmış, seviyelendirilmiş enerji maliyeti (LCOE) hesaplanmış ve hibrit santralın ekonomik açıdan da avantajlı olduğuna dikkat çekilmiştir. Çalışma, hibrit sistemin daha güvenilir, daha yüksek verimli olduğuna dikkat çekmektedir. Verim artışı, güç artışı, yakıt tasarrufu ve azalan su kullanımı miktarları hesaplanmış ve farklı durumlar için birbiri ile kıyaslanmıştır. Güneş sahasının santrala entegrasyonun da bu parametreler üstünde oldukça önemli bir rol oynadığı ispatlanmıştır.

References

  • The International Energy Outlook [IEO], U.S. Department of Energy, Washington, 2016. Retrieved December 3, from http://large.stanford.edu/courses/2010/ph240/riley2/docs/EIA-0484-2010.pdf.
  • Bakos,G.,C. and Tsechelidou, C. “Solar aided power generation of a 300 MW lignite fired power plant combined with line-focus parabolic trough collectors field”, Renewable Energy, 60, 540-547, 2013
  • Zhao,Y., Hong, H. and Jin, H., “Optimization of the solar field size for the solar–coal hybrid system”, Applied Energy, 185, 1162-1172, 2017
  • Sargent, Lundy, “Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts”. NREL-report, Colorado, USA. Retrieved September 14 2003, from https://www.nrel.gov/docs/fy04osti/34440.pdf.
  • Chandra, L.,and Dixit, A., Concentrated Solar Thermal Energy Technology, Springer Nature Singapore Pte Ltd., 2018
  • Kalogirou, S., A., Solar Energy Engineering (processes and systems), Elsevier Inc., 2009
  • Peng, S., Hong, H., Jin, H., Zhang, Z., “A new rotatable-axis tracking solar parabolic-trough collector for solar-hybrid coal-fired power plants”, Solar Energy, 98, 492–502, 2013
  • Goswami, D., Y., and Kreith, F., Energy Conversion, CRC press, USA, 2008
  • Kakaç, S., Liu, H., Pramuanjaroenkij, A. Heat Exchanger Selection, Rating, and Thermal Design, third edition. CRC Press, 2012
  • Li, J., Yu, X., Wang, J., & Huang, S. “Coupling performance analysis of a solar aided coal-fired power plant”, Applied Thermal Engineering, 106, 613–624, 2016
  • Padilla, R., V., “Simplified Methodology for Designing Parabolic Trough Solar Power Plants”. PhD. Dissertation submitted to University of South Florida, retrieved December 14, 2017, from https://scholarcommons.usf.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=4585&context=etd
  • El-Wakil, M., M., Power Plant Technology, University of Wisconsin, McGraw-Hill Inc., 1984
  • Moran, M., J., & Shapiro, H., N., Fundamentals of Engineering Thermodynamics, 5th Edition, John Wiley and Sons Ltd, England, 2004
  • Al-Attwani, A., H., S., Thermodynamic analysis and simulation of parabolic trough solar collector hybrid steam turbine power plant, MSc Thesis Submitted to Çankaya University, Mechanical Eng. Dept., 2017
  • Duffie, J., A., Beckman, W., A., Solar Engineering of Thermal Processes, Fourth Edition. John Wiley & Sons, Inc., 2013
  • Online meteorological data in Iraq, Retrieved December 1, 2017, from http://www.agromet.gov.iq/index.php?name=Pages&op=page&pid=157.
  • Men, W., Optical and thermal modeling of parabolic trough concentrator systems, ‘PhD dissertation submitted to ETH ZURICH’, retrieved December 1, 2017, from http://doi.org/10.3929/ethz-a-010120400
  • Lovegrove, K., and Stein, W., Concentrating solar power technology, principle, Woodhead, 2012
  • Incropera, F., P., Dewitt, D., P., Therodore, and Bergman, T., L., Lavine, A., S, Fundamentals of Heat and Mass Transfer, 5th edition , WILY& Sons, Inc., 2013
  • American Society of Mechanical Engineers (ASME), ASME B31.1-2002, American National Standard, ASME Code for Pressure Piping,2004
  • Standards of the Tubular Exchanger Manufactures Association, TEMA Standards, 2017
  • Blair, N., Mehos, M., and Christensen, Sensitivity of Concentrating Solar Power trough performance, cost, and financing with the Solar Advisor Model. Tech. Rep. NREL/CD-550-42709, NREL, 2008.

THERMODYNAMIC ANALYSIS AND SIMULATION OF STEAM TURBINE POWER PLANT HYBRID WITH PARABOLIC TROUGH COLLECTORS; A STUDY IN IRAQ

Year 2019, , 1 - 12, 11.12.2019
https://doi.org/10.22531/muglajsci.537102

Abstract

Fossil
fuel thermal power plants are major investments for electricity production
despite of their environmental drawbacks. Using solar energy in a hybrid manner
with these power plants a sensible and an economical choice for advanced power
generation.  In this study, thermodynamic
analysis and simulation of a steam turbine power plant hybrid with parabolic
trough solar collector field is done. Design process includes selection of heat
transfer fluid (HTF), determination of the required solar power, orientation
and sizing of the solar field, preliminary design of the solar heat exchanger
(HEX) and thermodynamic analysis of the hybrid plant. After verification of
computational model, simulations of steam power plant and hybrid power plant
are done and results for increasing output electricity and saving fuel oil are
studied considering the efficiency improvement and the environmental effects.
Important solar field parameters like HTF, glass and absorber temperatures,
heat loss coefficients and output power of the collector field are simulated
and discussed. Finally, a simple economic analysis is done using levelized cost
of energy method (LCOE) which showed that hybridization is economically
sound.  The study also suggests that,
hybridization is a sensible choice for increasing efficiency and output power,
decreasing use of fossil fuels, thus environment problems. The orientation of
the hybrid connection plays an important role on these parameters.

References

  • The International Energy Outlook [IEO], U.S. Department of Energy, Washington, 2016. Retrieved December 3, from http://large.stanford.edu/courses/2010/ph240/riley2/docs/EIA-0484-2010.pdf.
  • Bakos,G.,C. and Tsechelidou, C. “Solar aided power generation of a 300 MW lignite fired power plant combined with line-focus parabolic trough collectors field”, Renewable Energy, 60, 540-547, 2013
  • Zhao,Y., Hong, H. and Jin, H., “Optimization of the solar field size for the solar–coal hybrid system”, Applied Energy, 185, 1162-1172, 2017
  • Sargent, Lundy, “Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts”. NREL-report, Colorado, USA. Retrieved September 14 2003, from https://www.nrel.gov/docs/fy04osti/34440.pdf.
  • Chandra, L.,and Dixit, A., Concentrated Solar Thermal Energy Technology, Springer Nature Singapore Pte Ltd., 2018
  • Kalogirou, S., A., Solar Energy Engineering (processes and systems), Elsevier Inc., 2009
  • Peng, S., Hong, H., Jin, H., Zhang, Z., “A new rotatable-axis tracking solar parabolic-trough collector for solar-hybrid coal-fired power plants”, Solar Energy, 98, 492–502, 2013
  • Goswami, D., Y., and Kreith, F., Energy Conversion, CRC press, USA, 2008
  • Kakaç, S., Liu, H., Pramuanjaroenkij, A. Heat Exchanger Selection, Rating, and Thermal Design, third edition. CRC Press, 2012
  • Li, J., Yu, X., Wang, J., & Huang, S. “Coupling performance analysis of a solar aided coal-fired power plant”, Applied Thermal Engineering, 106, 613–624, 2016
  • Padilla, R., V., “Simplified Methodology for Designing Parabolic Trough Solar Power Plants”. PhD. Dissertation submitted to University of South Florida, retrieved December 14, 2017, from https://scholarcommons.usf.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=4585&context=etd
  • El-Wakil, M., M., Power Plant Technology, University of Wisconsin, McGraw-Hill Inc., 1984
  • Moran, M., J., & Shapiro, H., N., Fundamentals of Engineering Thermodynamics, 5th Edition, John Wiley and Sons Ltd, England, 2004
  • Al-Attwani, A., H., S., Thermodynamic analysis and simulation of parabolic trough solar collector hybrid steam turbine power plant, MSc Thesis Submitted to Çankaya University, Mechanical Eng. Dept., 2017
  • Duffie, J., A., Beckman, W., A., Solar Engineering of Thermal Processes, Fourth Edition. John Wiley & Sons, Inc., 2013
  • Online meteorological data in Iraq, Retrieved December 1, 2017, from http://www.agromet.gov.iq/index.php?name=Pages&op=page&pid=157.
  • Men, W., Optical and thermal modeling of parabolic trough concentrator systems, ‘PhD dissertation submitted to ETH ZURICH’, retrieved December 1, 2017, from http://doi.org/10.3929/ethz-a-010120400
  • Lovegrove, K., and Stein, W., Concentrating solar power technology, principle, Woodhead, 2012
  • Incropera, F., P., Dewitt, D., P., Therodore, and Bergman, T., L., Lavine, A., S, Fundamentals of Heat and Mass Transfer, 5th edition , WILY& Sons, Inc., 2013
  • American Society of Mechanical Engineers (ASME), ASME B31.1-2002, American National Standard, ASME Code for Pressure Piping,2004
  • Standards of the Tubular Exchanger Manufactures Association, TEMA Standards, 2017
  • Blair, N., Mehos, M., and Christensen, Sensitivity of Concentrating Solar Power trough performance, cost, and financing with the Solar Advisor Model. Tech. Rep. NREL/CD-550-42709, NREL, 2008.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Journals
Authors

Ekin Özgirgin Yapıcı 0000-0002-7550-5949

Anwer Hamed Salih Al-attwani This is me 0000-0003-1733-9097

Publication Date December 11, 2019
Published in Issue Year 2019

Cite

APA Özgirgin Yapıcı, E., & Al-attwani, A. H. S. (2019). THERMODYNAMIC ANALYSIS AND SIMULATION OF STEAM TURBINE POWER PLANT HYBRID WITH PARABOLIC TROUGH COLLECTORS; A STUDY IN IRAQ. Mugla Journal of Science and Technology, 5(2), 1-12. https://doi.org/10.22531/muglajsci.537102
AMA Özgirgin Yapıcı E, Al-attwani AHS. THERMODYNAMIC ANALYSIS AND SIMULATION OF STEAM TURBINE POWER PLANT HYBRID WITH PARABOLIC TROUGH COLLECTORS; A STUDY IN IRAQ. MJST. December 2019;5(2):1-12. doi:10.22531/muglajsci.537102
Chicago Özgirgin Yapıcı, Ekin, and Anwer Hamed Salih Al-attwani. “THERMODYNAMIC ANALYSIS AND SIMULATION OF STEAM TURBINE POWER PLANT HYBRID WITH PARABOLIC TROUGH COLLECTORS; A STUDY IN IRAQ”. Mugla Journal of Science and Technology 5, no. 2 (December 2019): 1-12. https://doi.org/10.22531/muglajsci.537102.
EndNote Özgirgin Yapıcı E, Al-attwani AHS (December 1, 2019) THERMODYNAMIC ANALYSIS AND SIMULATION OF STEAM TURBINE POWER PLANT HYBRID WITH PARABOLIC TROUGH COLLECTORS; A STUDY IN IRAQ. Mugla Journal of Science and Technology 5 2 1–12.
IEEE E. Özgirgin Yapıcı and A. H. S. Al-attwani, “THERMODYNAMIC ANALYSIS AND SIMULATION OF STEAM TURBINE POWER PLANT HYBRID WITH PARABOLIC TROUGH COLLECTORS; A STUDY IN IRAQ”, MJST, vol. 5, no. 2, pp. 1–12, 2019, doi: 10.22531/muglajsci.537102.
ISNAD Özgirgin Yapıcı, Ekin - Al-attwani, Anwer Hamed Salih. “THERMODYNAMIC ANALYSIS AND SIMULATION OF STEAM TURBINE POWER PLANT HYBRID WITH PARABOLIC TROUGH COLLECTORS; A STUDY IN IRAQ”. Mugla Journal of Science and Technology 5/2 (December 2019), 1-12. https://doi.org/10.22531/muglajsci.537102.
JAMA Özgirgin Yapıcı E, Al-attwani AHS. THERMODYNAMIC ANALYSIS AND SIMULATION OF STEAM TURBINE POWER PLANT HYBRID WITH PARABOLIC TROUGH COLLECTORS; A STUDY IN IRAQ. MJST. 2019;5:1–12.
MLA Özgirgin Yapıcı, Ekin and Anwer Hamed Salih Al-attwani. “THERMODYNAMIC ANALYSIS AND SIMULATION OF STEAM TURBINE POWER PLANT HYBRID WITH PARABOLIC TROUGH COLLECTORS; A STUDY IN IRAQ”. Mugla Journal of Science and Technology, vol. 5, no. 2, 2019, pp. 1-12, doi:10.22531/muglajsci.537102.
Vancouver Özgirgin Yapıcı E, Al-attwani AHS. THERMODYNAMIC ANALYSIS AND SIMULATION OF STEAM TURBINE POWER PLANT HYBRID WITH PARABOLIC TROUGH COLLECTORS; A STUDY IN IRAQ. MJST. 2019;5(2):1-12.

5975f2e33b6ce.png
Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri ve Teknoloji Dergisi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.