Research Article
BibTex RIS Cite

WAY-BELOW ESNEK KÜME BAĞINTISI

Year 2019, , 23 - 27, 11.12.2019
https://doi.org/10.22531/muglajsci.566641

Abstract

Sıralama, matematiksel
objeler ve ilgili alanlarda sıklıkla kullanılmaktadır. Molodtsov [1] tarafında
ortaya çıkartılan esnek kümelerde sıralama kullanıyoruz. İlk olarak Babitha and
Sunil [2] esnek küme bağıntısı tanımını verdikten sonra Babitha and Sunil [3] kısmi
sıralı esnek kümeyi tanımlamışlardır. “New structures on partially ordered soft
sets and soft Scott topology” [4] isimli çalışmamızda, yönlendirilmiş esnek
kümeleri tanıttık. Bundan başka, “Some new results on orderings on soft sets”
[5] isimli çalışmamızda esnek latis,
tam esnek latis tanımları verildi. Way-Below Esnek Küme bağıntısı hakkında
ICRAPAM 2014’te Konferans Özet Kitabında sadece özetinin yayınlandığı bir sunum
yaptık [6].  Bu makalede, bu çalışma
genişletildi ve sunumumuzdaki tüm sonuçların ispatları verildi.  Ayrıca, sürekli esnek latis, L-esnek domain
tanımlandı ve bazı önemli sonuçlar elde edilerek ispatlandı. 

References

  • [1] Molodtsov, D. (1999). “Soft set theory-first results.” Comput. Math. Appl. 37: 19–31
  • [2] Babitha, K. V. and Sunil, J. J. (2010). “Soft set relations and functions.” Comput. Math. Appl. 60: 1840–1849.
  • [3] Babitha, K.V. and Sunil, J.J. (2011). “Transitive closures and ordering on soft sets.” Comput. Math. Appl. 62: 2235–2239.
  • [4] Tanay, B. and Yaylalı, G. (2014). “New structures on partially ordered soft sets and soft Scott topology.” Ann. Fuzz. Math. Inform. 7(89-97).
  • [5] Tanay, B. and Yaylalı, G. (2015). “Some new results on orderings on soft sets.” Journal of Technology of Dumlupınar University 34.
  • [6] Tanay, B. and Yaylalı, G. (2014), “The Way-Below Soft Set Relation”, International Conferences on Recent Advances in Pure and Applied Mathematics, Antalya, Turkey (2014)
  • [7] Maji, P.K., Biswas, R. and Roy, A.R. (2003). “Soft set theory.” Comput. Math. Appl. 45: 555–562.
  • [8] Çağman N. and Enginoğlu S., “Soft matrix theory and its decision making”, Comput. Math. Appl. 59 (2010) 3308-3314.
  • [9] Aktaş H., Çağman N., “Soft Sets and Soft Groups”, Inform. Sciences. 177 2726-2735 (2007)
  • [10] Jun Y.B. and Park C.H., “Applications of Soft Sets in Ideal Theory of BCK/BCI Algebras”, Inform. Sciences, 178 2466-2475 (2008)
  • [11] Jun Y.B. and Park C.H., “Applications of Soft Sets in Hilbert Algebras”, Iran J. Fuzzy Syst. 6/2 75-88 (2009)
  • [12] Jun Y.B., Kim H.S. and Neggers J., “Pseudo d-algebras”, Inform. Sciences, 179 1751-1759 (2009)
  • [13] Jun, Y., B., Lee, K., J. and Khan, A., “Soft Ordered Semigroups”, Math. Log Quart. 56, No.1, 42-50 (2010)
  • [14] Roy, S. and Samanta, T.K. (2011). “An introduction of a soft topological spaces.” In Proceeding of UGC sponsored National seminar on Recent trends in Fuzzy set theory, Rough set theory and Soft set theory at Uluberia College on 23rd and 24th September, 2011.
  • [15] Onyeozili I.A. and Gwary T.M., “A study the Fundamentals of Soft Set Theory”, International of Sciences and Technology Research, 3-4 132-143 (2014)
  • [16] Maji P.K., Biswas R. and Roy A.R., “Fuzzy Soft sets”, Journal Fuzzy Mathematics, Vol.3, 589-602 (2001)
  • [17] Borah M.J., Neog T. J. and Sut D. K., “Relations on Fuzzy Soft Sets”, J. Math. Comput. Sci. 2 No: 3 515-534 (2012)
  • [18] Sut D. K., “An Application of Fuzzy Soft Relation in Decision Making Problems”, International Journal of Mathematics Trends and Technology Vol.3-2 (2012)
  • [19] Guan X., Li Y. and Feng F., “A new order relation on fuzzy soft sets and its applications”, Soft Compt. 17 63-70 (2013)
  • [20] Seselja B. and Tepavcecic A. “A note on a natural equivalence relation on fuzzy power set”, Fuzzy Sets and Systems, 148 201-210 (2004)
  • [21] Çağman N., Cıtak F. and Enginoğlu S., “Fuzzy parametrized fuzzy soft set theory and its applications”, Turk. J. Fuzzy Syst. 1/1 21-35 (2010)
  • [22] Ibrahim A.M, Dauda M.K. and Singh D., “Composition of Soft Set Relations and Construction of Transitive Closure”, Math Theory and Modeling, 2-7 (2012) 98-108.
  • [23] Fu Li, “Soft Lattices”, Global Journal of Science Frontier Research 56 Vol.10 Issue 4 (Ver 1,0) (2010)
  • [24] Ali, M., I., “Soft Ideals and Soft Filters of Soft Ordered Semigroups”, Comp. Math. Appl. 62 (2011) 3396-3403
  • [25] Yang, H. and Guo, Z., “Kernels and Closures of Soft Set Relations, and Soft Set Relation Mappings”, Comp. Math. Appl. 61(2011)651-662
  • [26] Zhang G. and Gao N., “Lattices and topological structures of soft sets over the power set of a universe”, Ann. Fuzzy Math. Inform., 8-2 319-337 (2014)
  • [27] Karaaslan F., Çağman N., and Enginoğlu S., “Soft Lattices”, Journal New Results in Science 1 5-17 (2012)
  • [28] Jobissh V. D., Babitha K. V. and Sunil J. J., “On soft Lattice Operation”, Journal Advanced Research in Pure Mathematics, 5-2 p.71 (2013)
  • [29] Park, J.H., Kim, O.H. and Kwun, Y.C., “Some properties of soft set relations”, Compt. Math. Appl. 63 (2012) 1079-1088
  • [30] Sayed, A. F. (2014). “Continuity of partially ordered soft sets via soft scott topology and soft sobrification.” Bulletin of Mathematical Sciences and Applications 3: 98–113.
  • [31] Karel Hrbacek, Thomas Jech, “Introduction to Set Theory”, Marcel Dekker Inc., 1984.
  • [32] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J. D., Mislove, M. and Scott, D. S. (1993). “Continuous Lattices and Domains. Cambrigde University Press.
  • [33] Yaylalı G., Tanay B., “Results on soft continuous functions in the soft topological spaces equipped with soft Scott topology”, J. Nonlinear Sci. Appl., 10, 1183-1194, doi:10.22436/jnsa.010.03.26 (2017)

THE WAY-BELOW SOFT SET RELATION

Year 2019, , 23 - 27, 11.12.2019
https://doi.org/10.22531/muglajsci.566641

Abstract

Order is used frequently in
mathematical objects and related fields. We use order in the soft set that is
introduced by Molodtsov [1]. Babitha and Sunil [2] gave the definition of soft
set relation, then Babitha and Sunil [3] defined partially ordered soft set. We
introduced directed soft sets in [4]. Moreover, definition of soft lattice,
complete soft lattice were given in [5]. We made a presentation,
whose abstract was
published only in the Abstract Book, in ICRAPAM 2014 [6] about the way-below
soft set relation. In this paper, this study is
 extended and the proofs of all results of our
presentation is given. Moreover, continuous soft lattices, L-soft domain are
defined, and some important results are obtained and proved in this study. 

References

  • [1] Molodtsov, D. (1999). “Soft set theory-first results.” Comput. Math. Appl. 37: 19–31
  • [2] Babitha, K. V. and Sunil, J. J. (2010). “Soft set relations and functions.” Comput. Math. Appl. 60: 1840–1849.
  • [3] Babitha, K.V. and Sunil, J.J. (2011). “Transitive closures and ordering on soft sets.” Comput. Math. Appl. 62: 2235–2239.
  • [4] Tanay, B. and Yaylalı, G. (2014). “New structures on partially ordered soft sets and soft Scott topology.” Ann. Fuzz. Math. Inform. 7(89-97).
  • [5] Tanay, B. and Yaylalı, G. (2015). “Some new results on orderings on soft sets.” Journal of Technology of Dumlupınar University 34.
  • [6] Tanay, B. and Yaylalı, G. (2014), “The Way-Below Soft Set Relation”, International Conferences on Recent Advances in Pure and Applied Mathematics, Antalya, Turkey (2014)
  • [7] Maji, P.K., Biswas, R. and Roy, A.R. (2003). “Soft set theory.” Comput. Math. Appl. 45: 555–562.
  • [8] Çağman N. and Enginoğlu S., “Soft matrix theory and its decision making”, Comput. Math. Appl. 59 (2010) 3308-3314.
  • [9] Aktaş H., Çağman N., “Soft Sets and Soft Groups”, Inform. Sciences. 177 2726-2735 (2007)
  • [10] Jun Y.B. and Park C.H., “Applications of Soft Sets in Ideal Theory of BCK/BCI Algebras”, Inform. Sciences, 178 2466-2475 (2008)
  • [11] Jun Y.B. and Park C.H., “Applications of Soft Sets in Hilbert Algebras”, Iran J. Fuzzy Syst. 6/2 75-88 (2009)
  • [12] Jun Y.B., Kim H.S. and Neggers J., “Pseudo d-algebras”, Inform. Sciences, 179 1751-1759 (2009)
  • [13] Jun, Y., B., Lee, K., J. and Khan, A., “Soft Ordered Semigroups”, Math. Log Quart. 56, No.1, 42-50 (2010)
  • [14] Roy, S. and Samanta, T.K. (2011). “An introduction of a soft topological spaces.” In Proceeding of UGC sponsored National seminar on Recent trends in Fuzzy set theory, Rough set theory and Soft set theory at Uluberia College on 23rd and 24th September, 2011.
  • [15] Onyeozili I.A. and Gwary T.M., “A study the Fundamentals of Soft Set Theory”, International of Sciences and Technology Research, 3-4 132-143 (2014)
  • [16] Maji P.K., Biswas R. and Roy A.R., “Fuzzy Soft sets”, Journal Fuzzy Mathematics, Vol.3, 589-602 (2001)
  • [17] Borah M.J., Neog T. J. and Sut D. K., “Relations on Fuzzy Soft Sets”, J. Math. Comput. Sci. 2 No: 3 515-534 (2012)
  • [18] Sut D. K., “An Application of Fuzzy Soft Relation in Decision Making Problems”, International Journal of Mathematics Trends and Technology Vol.3-2 (2012)
  • [19] Guan X., Li Y. and Feng F., “A new order relation on fuzzy soft sets and its applications”, Soft Compt. 17 63-70 (2013)
  • [20] Seselja B. and Tepavcecic A. “A note on a natural equivalence relation on fuzzy power set”, Fuzzy Sets and Systems, 148 201-210 (2004)
  • [21] Çağman N., Cıtak F. and Enginoğlu S., “Fuzzy parametrized fuzzy soft set theory and its applications”, Turk. J. Fuzzy Syst. 1/1 21-35 (2010)
  • [22] Ibrahim A.M, Dauda M.K. and Singh D., “Composition of Soft Set Relations and Construction of Transitive Closure”, Math Theory and Modeling, 2-7 (2012) 98-108.
  • [23] Fu Li, “Soft Lattices”, Global Journal of Science Frontier Research 56 Vol.10 Issue 4 (Ver 1,0) (2010)
  • [24] Ali, M., I., “Soft Ideals and Soft Filters of Soft Ordered Semigroups”, Comp. Math. Appl. 62 (2011) 3396-3403
  • [25] Yang, H. and Guo, Z., “Kernels and Closures of Soft Set Relations, and Soft Set Relation Mappings”, Comp. Math. Appl. 61(2011)651-662
  • [26] Zhang G. and Gao N., “Lattices and topological structures of soft sets over the power set of a universe”, Ann. Fuzzy Math. Inform., 8-2 319-337 (2014)
  • [27] Karaaslan F., Çağman N., and Enginoğlu S., “Soft Lattices”, Journal New Results in Science 1 5-17 (2012)
  • [28] Jobissh V. D., Babitha K. V. and Sunil J. J., “On soft Lattice Operation”, Journal Advanced Research in Pure Mathematics, 5-2 p.71 (2013)
  • [29] Park, J.H., Kim, O.H. and Kwun, Y.C., “Some properties of soft set relations”, Compt. Math. Appl. 63 (2012) 1079-1088
  • [30] Sayed, A. F. (2014). “Continuity of partially ordered soft sets via soft scott topology and soft sobrification.” Bulletin of Mathematical Sciences and Applications 3: 98–113.
  • [31] Karel Hrbacek, Thomas Jech, “Introduction to Set Theory”, Marcel Dekker Inc., 1984.
  • [32] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J. D., Mislove, M. and Scott, D. S. (1993). “Continuous Lattices and Domains. Cambrigde University Press.
  • [33] Yaylalı G., Tanay B., “Results on soft continuous functions in the soft topological spaces equipped with soft Scott topology”, J. Nonlinear Sci. Appl., 10, 1183-1194, doi:10.22436/jnsa.010.03.26 (2017)
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Journals
Authors

Bekir Tanay 0000-0003-4066-2044

Gözde Yaylalı 0000-0001-8191-2674

Publication Date December 11, 2019
Published in Issue Year 2019

Cite

APA Tanay, B., & Yaylalı, G. (2019). THE WAY-BELOW SOFT SET RELATION. Mugla Journal of Science and Technology, 5(2), 23-27. https://doi.org/10.22531/muglajsci.566641
AMA Tanay B, Yaylalı G. THE WAY-BELOW SOFT SET RELATION. MJST. December 2019;5(2):23-27. doi:10.22531/muglajsci.566641
Chicago Tanay, Bekir, and Gözde Yaylalı. “THE WAY-BELOW SOFT SET RELATION”. Mugla Journal of Science and Technology 5, no. 2 (December 2019): 23-27. https://doi.org/10.22531/muglajsci.566641.
EndNote Tanay B, Yaylalı G (December 1, 2019) THE WAY-BELOW SOFT SET RELATION. Mugla Journal of Science and Technology 5 2 23–27.
IEEE B. Tanay and G. Yaylalı, “THE WAY-BELOW SOFT SET RELATION”, MJST, vol. 5, no. 2, pp. 23–27, 2019, doi: 10.22531/muglajsci.566641.
ISNAD Tanay, Bekir - Yaylalı, Gözde. “THE WAY-BELOW SOFT SET RELATION”. Mugla Journal of Science and Technology 5/2 (December 2019), 23-27. https://doi.org/10.22531/muglajsci.566641.
JAMA Tanay B, Yaylalı G. THE WAY-BELOW SOFT SET RELATION. MJST. 2019;5:23–27.
MLA Tanay, Bekir and Gözde Yaylalı. “THE WAY-BELOW SOFT SET RELATION”. Mugla Journal of Science and Technology, vol. 5, no. 2, 2019, pp. 23-27, doi:10.22531/muglajsci.566641.
Vancouver Tanay B, Yaylalı G. THE WAY-BELOW SOFT SET RELATION. MJST. 2019;5(2):23-7.

5975f2e33b6ce.png
Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri ve Teknoloji Dergisi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.