Research Article
BibTex RIS Cite

EFFECT OF SILICA OBTAINED FROM RICE HUSK ON THE STRUCTURAL AND THERMAL PROPERTIES OF POLYLACTIC ACID/POLYETHYLENE GLYCOL FILMS

Year 2019, , 91 - 96, 11.12.2019
https://doi.org/10.22531/muglajsci.606112

Abstract

Ambalaj sektöründe kullanılan plastik
malzemelerin çoğu petrol kökenlidir. Bu tür malzemeler doğada uzun yıllar
çözünmeyip atmosferdeki CO2’in artmasına neden olur. Yenilenebilir
kaynaklardan elde edilen polilaktik asit (PLA) benzeri biyobozunur polimerler
petrol kökenli polimerlere alternatif olarak görülmektedir. PLA çevre dostu,
biyobozunur ve biyouyumlu olması gibi birçok avantaja sahip olmasına rağmen
düşük gaz bariyer özellikleri, termal dayanımı, kırılgan ve maliyetli olması
birçok uygulamada kullanımını sınırlamaktadır. Bu çalışmada ilk olarak atık
olarak görülen pirinç kabuğundan silika elde edilmiştir. Farklı katkı
yüzdelerinde (%5, 10 ve 20) silika %20 polietilen glikol (PEG) içeren PLA
çözeltilerine eklenmiş ve kompozit filmler çözücü döküm yöntemi ile
hazırlanmıştır. Filmlerin termal ve yapısal özellikleri Fourier Dönüşümlü
İnfrared Spektroskopi (FT-IR), Taramalı Elektron Mikroskobu (SEM),
Termogravimetrik Analiz (TGA), Diferansiyel Taramalı Kalorimetre (DSC) ve Su
Absorpsiyon Kapasitesi Testi ile belirlenmiştir. Analiz sonuçlarına göre,
silikanın PLA-PEG filmlerinin termal dayanımını iyileştirdiği ve su tutma
kapasitelerini artırdığı görülmüştür.

References

  • [1] Niu, X., Liu, Y., Song, Y., Han, J., and Pan, H., “Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid/chitosan composite film for food packaging”, Carbohydrate polymers, vol.183, pp. 102-109, 2018.
  • [2] Ebnesajjad S., “Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications”, Elsevier Science, USA, 2013.
  • [3] Murariu, M., and Dubois, P., “PLA composites: From production to properties”. Advanced drug delivery reviews, vol.107, pp. 17-46, 2016.
  • [4] Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., and Balart, R., “PLA films with improved flexibility properties by using maleinized cottonseed oil”, European Polymer Journal, vol. 91, pp. 248-259, 2017.
  • [5] Elsawy, M., JdC, C., and Sanporean, C. G., “Investigation of jojoba oil-wax as a plasticizer for poly (lactic acid)”, Optoelectron Adv. Mater., vol. 8(1-2), pp. 109-14, 2014.
  • [6] Prempeh, N., Li, J., Liu, D., Das, K., Maiti, S., and Zhang, Y., “Plasticizing effects of epoxidized sun flower oil on biodegradable polylactide films: a comparative study”, Polymer Science Series A, vol. 56, no.6, pp. 856-863, 2014.
  • [7] Hao, Y. H., Huang, Z., Wang, J. W., Yang, X. Y., Fan, X. Y., Li, Y. I., and Peng, Y. W., “Improved thermal stability of poly (L-lactide) with the incorporation of zeolite ZSM-5”, Polymer Testing, vol. 49, pp. 46-56, 2016.
  • [8] Ho, M. P., Lau, K. T., Wang, H., and Hui, D., “Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles”, Composites Part B: Engineering, vol. 81, pp.14-25, 2016.
  • [9] Yang, W., Fortunati, E., Dominici, F., Kenny, J. M., and Puglia, D., “Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting”, European Polymer Journal, vol. 71, pp. 126-139, 2015.
  • [10] Yamoum, C., and Magaraphan, R., “Effect of peanut shell content on mechanical, thermal, and biodegradable properties of peanut shell/polylactic acid biocomposites”, Polymer Composites, vol. 38, no. 4, pp. 682-690, 2017.
  • [11] Wang, L. F., Rhim, J. W., and Hong, S. I., “Preparation of poly (lactide)/poly (butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application”, LWT-Food Science and Technology, vol. 68, pp. 454-461, 2016.
  • [12] Weng, Y. X., Jin, Y. J., Meng, Q. Y., Wang, L., Zhang, M., and Wang, Y. Z., “Biodegradation behavior of poly (butylene adipate-co-terephthalate) (PBAT), poly (lactic acid) (PLA), and their blend under soil conditions”, Polymer Testing, vol. 32, no.5, pp. 918-926, 2013.
  • [13] Matta, A. K., Rao, R. U., Suman, K. N. S., and Rambabu, V., “Preparation and characterization of biodegradable PLA/PCL polymeric blends”, Procedia materials science, vol. 6, pp. 1266-1270, 2014.
  • [14] Yalcin, N., and Sevinc, V., “Studies on silica obtained from rice husk”, Ceramics international, vol. 27, no. 2, pp. 219-224, 2001.
  • [15] Ahmed, K., Nizami, S. S., and Riza, N. Z., “Reinforcement of natural rubber hybrid composites based on marble sludge/Silica and marble sludge/rice husk derived silica”, Journal of Advanced Research, vol. 5, no. 2, pp. 165-173, 2014.
  • [16] Zhang, J., Wang, S., Zhao, D., Zhang, Y., Pang, W., Zhang, B., and Li, Q., “Improved processability and performance of biomedical devices with poly (lactic acid)/poly (ethylene glycol) blends”, Journal of Applied Polymer Science, vol. 134, no. 33, pp. 45194, 2017.
  • [17] Battegazzore, D., Bocchini, S., Alongi, J., and Frache, A., “Rice husk as bio-source of silica: preparation and characterization of PLA–silica bio-composites”, RSC Advances, vol. 4, no. 97, pp. 54703-54712, 2014.
  • [18] Ayswarya, E. P., Francis, K. V., Renju, V. S., and Thachil, E. T., ”Rice husk ash–A valuable reinforcement for high density polyethylene”, Materials & Design, vol. 41, pp. 1-7, 2012.
  • [19] Chieng, B., Ibrahim, N., Yunus, W., and Hussein, M., “Poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets”, Polymers, vol. 6, no. 1, pp. 93-104, 2014.
  • [20] Mohapatra, A. K., Mohanty, S., and Nayak, S. K., “Properties and characterization of biodegradable poly (lactic acid) (PLA)/poly (ethylene glycol) (PEG) and PLA/PEG/organoclay: A study of crystallization kinetics, rheology, and compostability”, Journal of Thermoplastic Composite Materials, vol. 29, no. 4, pp. 443-463, 2016.
  • [21] Ray, S. S., Yamada, K., Ogami, A., Okamoto, M., and Ueda, K., ”New polylactide/layered silicate nanocomposite: nanoscale control over multiple properties”, Macromolecular Rapid Communications, vol. 23, no. 16, pp. 943-947, 2002.
  • [22] Wen, X., Lin, Y., Han, C., Zhang, K., Ran, X., Li, Y., and Dong, L., “Thermomechanical and optical properties of biodegradable poly (L‐lactide)/silica nanocomposites by melt compounding”, Journal of applied polymer science, vol. 114, no. 6, pp. 3379-3388, 2009.
  • [23] Darie‐Niţă, R. N., Vasile, C., Irimia, A., Lipşa, R., and Râpă, M., “Evaluation of some eco‐friendly plasticizers for PLA films processing”, Journal of Applied Polymer Science, vol. 133, no. 13, 2006.
  • [24] Li, Y., Han, C., Bian, J., Han, L., Dong, L., and Gao, G. “Rheology and biodegradation of polylactide/silica nanocomposites”, Polymer Composites, vol. 33, no. 10, pp. 1719-1727, 2012.
  • [25] Toro, P., Quijada, R., Murillo, O., and Yazdani‐Pedram, M., “Study of the morphology and mechanical properties of polypropylene composites with silica or rice‐husk”, Polymer International, vol. 54, no. 4, pp. 730-734, 2005.
  • [26] Rhim, J. W., Mohanty, A. K., Singh, S. P., and Ng, P. K., “Effect of the processing methods on the performance of polylactide films: Thermocompression versus solvent casting”, Journal of applied polymer science, vol. 101, no. 6, pp. 3736-3742, 2006.

EFFECT OF SILICA OBTAINED FROM RICE HUSK ON THE STRUCTURAL AND THERMAL PROPERTIES OF POLYLACTIC ACID/POLYETHYLENE GLYCOL FILMS

Year 2019, , 91 - 96, 11.12.2019
https://doi.org/10.22531/muglajsci.606112

Abstract

Most of the plastic materials used in the
packaging industry are petroleum-based. These plastics do not decompose in soil
for many years and they lead to increase CO2 in the atmosphere.
Biodegradable polymers derived from renewable resources such as polylactic acid
(PLA) are considered as promising alternatives to petroleum-based polymers.
Although PLA has attracted attention due to having properties such as biodegradable,
environment friendly, and biocompatible, it cannot be used in many applications
due to its poor gas barrier properties, low thermal stability, high brittleness,
and cost. In this study, in the first step silica was obtained from the rice
husk. The obtained silica (5,10 and 20%) were added to PLA solutions containing
20% polyethylene glycol (PEG) and the composite films were prepared using
solvent casting method. The thermal and structural properties of the composite
films were determined by Fourier Transform Infrared Spectroscopy (FT-IR),
Scanning Electron Microscope (SEM), Thermogravimetric Analysis (TGA),
Differential Scanning Calorimetry (DSC) and Water Absorption Capacity Test.
According to results of analysis, the addition of silica to the PLA-PEG films
improved the thermal stability and increased the water absorption capacities of
films.

References

  • [1] Niu, X., Liu, Y., Song, Y., Han, J., and Pan, H., “Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid/chitosan composite film for food packaging”, Carbohydrate polymers, vol.183, pp. 102-109, 2018.
  • [2] Ebnesajjad S., “Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications”, Elsevier Science, USA, 2013.
  • [3] Murariu, M., and Dubois, P., “PLA composites: From production to properties”. Advanced drug delivery reviews, vol.107, pp. 17-46, 2016.
  • [4] Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., and Balart, R., “PLA films with improved flexibility properties by using maleinized cottonseed oil”, European Polymer Journal, vol. 91, pp. 248-259, 2017.
  • [5] Elsawy, M., JdC, C., and Sanporean, C. G., “Investigation of jojoba oil-wax as a plasticizer for poly (lactic acid)”, Optoelectron Adv. Mater., vol. 8(1-2), pp. 109-14, 2014.
  • [6] Prempeh, N., Li, J., Liu, D., Das, K., Maiti, S., and Zhang, Y., “Plasticizing effects of epoxidized sun flower oil on biodegradable polylactide films: a comparative study”, Polymer Science Series A, vol. 56, no.6, pp. 856-863, 2014.
  • [7] Hao, Y. H., Huang, Z., Wang, J. W., Yang, X. Y., Fan, X. Y., Li, Y. I., and Peng, Y. W., “Improved thermal stability of poly (L-lactide) with the incorporation of zeolite ZSM-5”, Polymer Testing, vol. 49, pp. 46-56, 2016.
  • [8] Ho, M. P., Lau, K. T., Wang, H., and Hui, D., “Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles”, Composites Part B: Engineering, vol. 81, pp.14-25, 2016.
  • [9] Yang, W., Fortunati, E., Dominici, F., Kenny, J. M., and Puglia, D., “Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting”, European Polymer Journal, vol. 71, pp. 126-139, 2015.
  • [10] Yamoum, C., and Magaraphan, R., “Effect of peanut shell content on mechanical, thermal, and biodegradable properties of peanut shell/polylactic acid biocomposites”, Polymer Composites, vol. 38, no. 4, pp. 682-690, 2017.
  • [11] Wang, L. F., Rhim, J. W., and Hong, S. I., “Preparation of poly (lactide)/poly (butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application”, LWT-Food Science and Technology, vol. 68, pp. 454-461, 2016.
  • [12] Weng, Y. X., Jin, Y. J., Meng, Q. Y., Wang, L., Zhang, M., and Wang, Y. Z., “Biodegradation behavior of poly (butylene adipate-co-terephthalate) (PBAT), poly (lactic acid) (PLA), and their blend under soil conditions”, Polymer Testing, vol. 32, no.5, pp. 918-926, 2013.
  • [13] Matta, A. K., Rao, R. U., Suman, K. N. S., and Rambabu, V., “Preparation and characterization of biodegradable PLA/PCL polymeric blends”, Procedia materials science, vol. 6, pp. 1266-1270, 2014.
  • [14] Yalcin, N., and Sevinc, V., “Studies on silica obtained from rice husk”, Ceramics international, vol. 27, no. 2, pp. 219-224, 2001.
  • [15] Ahmed, K., Nizami, S. S., and Riza, N. Z., “Reinforcement of natural rubber hybrid composites based on marble sludge/Silica and marble sludge/rice husk derived silica”, Journal of Advanced Research, vol. 5, no. 2, pp. 165-173, 2014.
  • [16] Zhang, J., Wang, S., Zhao, D., Zhang, Y., Pang, W., Zhang, B., and Li, Q., “Improved processability and performance of biomedical devices with poly (lactic acid)/poly (ethylene glycol) blends”, Journal of Applied Polymer Science, vol. 134, no. 33, pp. 45194, 2017.
  • [17] Battegazzore, D., Bocchini, S., Alongi, J., and Frache, A., “Rice husk as bio-source of silica: preparation and characterization of PLA–silica bio-composites”, RSC Advances, vol. 4, no. 97, pp. 54703-54712, 2014.
  • [18] Ayswarya, E. P., Francis, K. V., Renju, V. S., and Thachil, E. T., ”Rice husk ash–A valuable reinforcement for high density polyethylene”, Materials & Design, vol. 41, pp. 1-7, 2012.
  • [19] Chieng, B., Ibrahim, N., Yunus, W., and Hussein, M., “Poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets”, Polymers, vol. 6, no. 1, pp. 93-104, 2014.
  • [20] Mohapatra, A. K., Mohanty, S., and Nayak, S. K., “Properties and characterization of biodegradable poly (lactic acid) (PLA)/poly (ethylene glycol) (PEG) and PLA/PEG/organoclay: A study of crystallization kinetics, rheology, and compostability”, Journal of Thermoplastic Composite Materials, vol. 29, no. 4, pp. 443-463, 2016.
  • [21] Ray, S. S., Yamada, K., Ogami, A., Okamoto, M., and Ueda, K., ”New polylactide/layered silicate nanocomposite: nanoscale control over multiple properties”, Macromolecular Rapid Communications, vol. 23, no. 16, pp. 943-947, 2002.
  • [22] Wen, X., Lin, Y., Han, C., Zhang, K., Ran, X., Li, Y., and Dong, L., “Thermomechanical and optical properties of biodegradable poly (L‐lactide)/silica nanocomposites by melt compounding”, Journal of applied polymer science, vol. 114, no. 6, pp. 3379-3388, 2009.
  • [23] Darie‐Niţă, R. N., Vasile, C., Irimia, A., Lipşa, R., and Râpă, M., “Evaluation of some eco‐friendly plasticizers for PLA films processing”, Journal of Applied Polymer Science, vol. 133, no. 13, 2006.
  • [24] Li, Y., Han, C., Bian, J., Han, L., Dong, L., and Gao, G. “Rheology and biodegradation of polylactide/silica nanocomposites”, Polymer Composites, vol. 33, no. 10, pp. 1719-1727, 2012.
  • [25] Toro, P., Quijada, R., Murillo, O., and Yazdani‐Pedram, M., “Study of the morphology and mechanical properties of polypropylene composites with silica or rice‐husk”, Polymer International, vol. 54, no. 4, pp. 730-734, 2005.
  • [26] Rhim, J. W., Mohanty, A. K., Singh, S. P., and Ng, P. K., “Effect of the processing methods on the performance of polylactide films: Thermocompression versus solvent casting”, Journal of applied polymer science, vol. 101, no. 6, pp. 3736-3742, 2006.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Journals
Authors

Buğçe Aydın 0000-0001-5104-1484

Feza Geyikçi 0000-0003-4789-1026

Publication Date December 11, 2019
Published in Issue Year 2019

Cite

APA Aydın, B., & Geyikçi, F. (2019). EFFECT OF SILICA OBTAINED FROM RICE HUSK ON THE STRUCTURAL AND THERMAL PROPERTIES OF POLYLACTIC ACID/POLYETHYLENE GLYCOL FILMS. Mugla Journal of Science and Technology, 5(2), 91-96. https://doi.org/10.22531/muglajsci.606112
AMA Aydın B, Geyikçi F. EFFECT OF SILICA OBTAINED FROM RICE HUSK ON THE STRUCTURAL AND THERMAL PROPERTIES OF POLYLACTIC ACID/POLYETHYLENE GLYCOL FILMS. MJST. December 2019;5(2):91-96. doi:10.22531/muglajsci.606112
Chicago Aydın, Buğçe, and Feza Geyikçi. “EFFECT OF SILICA OBTAINED FROM RICE HUSK ON THE STRUCTURAL AND THERMAL PROPERTIES OF POLYLACTIC ACID/POLYETHYLENE GLYCOL FILMS”. Mugla Journal of Science and Technology 5, no. 2 (December 2019): 91-96. https://doi.org/10.22531/muglajsci.606112.
EndNote Aydın B, Geyikçi F (December 1, 2019) EFFECT OF SILICA OBTAINED FROM RICE HUSK ON THE STRUCTURAL AND THERMAL PROPERTIES OF POLYLACTIC ACID/POLYETHYLENE GLYCOL FILMS. Mugla Journal of Science and Technology 5 2 91–96.
IEEE B. Aydın and F. Geyikçi, “EFFECT OF SILICA OBTAINED FROM RICE HUSK ON THE STRUCTURAL AND THERMAL PROPERTIES OF POLYLACTIC ACID/POLYETHYLENE GLYCOL FILMS”, MJST, vol. 5, no. 2, pp. 91–96, 2019, doi: 10.22531/muglajsci.606112.
ISNAD Aydın, Buğçe - Geyikçi, Feza. “EFFECT OF SILICA OBTAINED FROM RICE HUSK ON THE STRUCTURAL AND THERMAL PROPERTIES OF POLYLACTIC ACID/POLYETHYLENE GLYCOL FILMS”. Mugla Journal of Science and Technology 5/2 (December 2019), 91-96. https://doi.org/10.22531/muglajsci.606112.
JAMA Aydın B, Geyikçi F. EFFECT OF SILICA OBTAINED FROM RICE HUSK ON THE STRUCTURAL AND THERMAL PROPERTIES OF POLYLACTIC ACID/POLYETHYLENE GLYCOL FILMS. MJST. 2019;5:91–96.
MLA Aydın, Buğçe and Feza Geyikçi. “EFFECT OF SILICA OBTAINED FROM RICE HUSK ON THE STRUCTURAL AND THERMAL PROPERTIES OF POLYLACTIC ACID/POLYETHYLENE GLYCOL FILMS”. Mugla Journal of Science and Technology, vol. 5, no. 2, 2019, pp. 91-96, doi:10.22531/muglajsci.606112.
Vancouver Aydın B, Geyikçi F. EFFECT OF SILICA OBTAINED FROM RICE HUSK ON THE STRUCTURAL AND THERMAL PROPERTIES OF POLYLACTIC ACID/POLYETHYLENE GLYCOL FILMS. MJST. 2019;5(2):91-6.

5975f2e33b6ce.png
Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri ve Teknoloji Dergisi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.