Research Article
BibTex RIS Cite
Year 2021, , 52 - 58, 31.12.2021
https://doi.org/10.22531/muglajsci.953561

Abstract

References

  • Krishnaswamy, S. (William N. SharpeJr.), Photoacoustic methods of materials characterization. Springer Handbook of Experimental Solid Mechanics, Springer, New York, 2008.
  • Maslov, K. I., & Wang, L. V., “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser”, Journal of Biomedical Optics, 13(2), 024006, 2008.
  • Setiawan, A., Setiaji, F. D., Nugroho, D. B., Riyanto, C. A., & Wibowo, N. A., “Subsurface detection of opaque and solid material defect based on photoacoustic effect”, Journal of Instrumentation, 15(04), P04010, 2020.
  • Tuan, P. H., Lai, Y. H., Wen, C. P., Huang, K. F., & Chen, Y. F., “Point-driven modern Chladni figures with symmetry breaking”, Scientific Reports, 8(1), 1-13, 2018.
  • Benjamin, L., Fanuel, M., Hohmann, M., Heinlein, M., Erika, C., Waldner, M. J., ... & Schmidt, M., “Remote photoacoustic sensing using speckle-analysis”, Scientific Reports, 9(1), 1-11, 2019.
  • Hibaru, K., Morimoto, J., & Miyakawa, T., “Photoacoustic spectroscopy detected by piezoelectric transducer with resonator”, Japanese Journal of Applied Physics, 29(S1), 280, 1990.
  • Inan, I., Öztürk, Y., & Özdemir, İ. E., “Optical power measurement by using piezo microphone”, IEEE Innovations in Intelligent Systems and Applications Conference (ASYU), 2019, 1-4.
  • Farrow, M. M., Burnham, R. K., Auzanneau, M., Olsen, S. L., Purdie, N., & Eyring, E. M., “Piezoelectric detection of photoacoustic signals”, Applied Optics, 17(7), 1093-1098, 1978.
  • Billah, K. Y., & Scanlan, R. H., “Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks”, American Journal of Physics, 59(2), 118-124, 1991.
  • Mariūnas, M., “Methods for determining resonant and parametric excitation frequencies of nonlinear dynamic systems”, American Journal of Computational and Applied Mathematics, 10(2), 39-47, 2020.
  • Wilcken, K., & Kauppinen, J., “Optimization of a microphone for photoacoustic spectroscopy”, Applied Spectroscopy, 57(9), 1087-1092, 2003.
  • Paralı, Levent, et al. "A digital measurement system based on laser displacement sensor for piezoelectric ceramic discs vibration characterization." Optik, 127.1, 84-89,2016
  • Parali, L., & Sari, A., “Vibration modelling of piezoelectric actuator (PEA) using Simulink software”, IEEE 4th International Conference on Electrical and Electronic Engineering (ICEEE), 2017, 153-157.
  • Tam, A. C., “Applications of photoacoustic sensing techniques”, Reviews of Modern Physics, 58(2), 381, 1986.
  • Lin, Y. C., & Ma, C. C., “Experimental measurement and numerical analysis on resonant characteristics of piezoelectric disks with partial electrode designs”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51(8), 937-947, 2004.
  • Ma, Y., Qiao, S., Patimisco, P., Sampaolo, A., Wang, Y., Tittel, F. K., & Spagnolo, V., “In-plane quartz-enhanced photoacoustic spectroscopy”, Applied Physics Letters, 116(6), 061101, 2020.
  • Tabaru, T. E., Hayber, S. E., & Saracoglu, O. G., “Frequency Domain Analysis of Laser and Acoustic Pressure Parameters in Photoacoustic Wave Equation for Acoustic Pressure Sensor Designs”, Current Optics and Photonics, 2(3), 250-260, 2018.
  • Han, S. A., Lee, J., Lin, J., Kim, S. W., & Kim, J. H., “Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials”, Nano Energy, 57, 680-691, 2019. Veber, A. A., Lyashedko, A., Sholokhov, E., Trikshev, A., Kurkov, A., Pyrkov, Y., ... & Tsvetkov, V., “Laser vibrometry based on analysis of the speckle pattern from a remote object”, Applied Physics-Section B-Lasers and Optics, 105(3), 613, 2011.
  • Lai, H. M., & Young, K., “Theory of the pulsed optoacoustic technique”, The Journal of the Acoustical Society of America, 72(6), 2000-2007, 1982.
  • Liu, G., “Theory of the photoacoustic effect in condensed matter” Applied Optics, 21(5), 955-960, 1982.
  • Popov, I. A., & Veselov, L. M., “Mechanical vibration spectrum analysis by means of a speckle method”, Optics Communications, 105(3-4), 167-170, 1994.

COMPARATIVE STUDY OF RESONANCE FREQUENCY OF CIRCULAR PIEZO MICROPHONE BASED ON PHOTOACOUSTIC, LASER SPECKLE, AND PIEZOELECTRIC EFFECTS

Year 2021, , 52 - 58, 31.12.2021
https://doi.org/10.22531/muglajsci.953561

Abstract

Resonance frequency of a circular piezoelectric microphone was measured by two types of methods which were named as photoacoustic and speckle method. In the photoacoustic method; acoustic waves were obtained due to the optical excitation and resulting thermally induced mechanical distortion was measured by the piezoelectric layer of microphone. Photoacoustic effect is a type of optical excitation, which creates an acoustic wave due to the absorbed light energy which causes thermal expansion of material. In contrast to the photoacoustic method, speckle method was conducted by electrical excitation of the piezoelectric layer which results in mechanical distortion and this distortion was detected by using changes in laser speckle pattern. Measurements were taken from 6 different piezo microphones in 3 different diameters of 15 mm, 35 mm, and 50 mm and the same thickness of brass plate in the frequency range of 0-11 kHz. As a conclusion, it is found that the resonance frequencies of same diameter microphones determined by the photoacoustic method are close but different with the results of the speckle method. It is believed that the differences in the results are caused by differences of excitation/detection mechanism for same microphones and shape, material parameter differences between microphones for different microphones.

References

  • Krishnaswamy, S. (William N. SharpeJr.), Photoacoustic methods of materials characterization. Springer Handbook of Experimental Solid Mechanics, Springer, New York, 2008.
  • Maslov, K. I., & Wang, L. V., “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser”, Journal of Biomedical Optics, 13(2), 024006, 2008.
  • Setiawan, A., Setiaji, F. D., Nugroho, D. B., Riyanto, C. A., & Wibowo, N. A., “Subsurface detection of opaque and solid material defect based on photoacoustic effect”, Journal of Instrumentation, 15(04), P04010, 2020.
  • Tuan, P. H., Lai, Y. H., Wen, C. P., Huang, K. F., & Chen, Y. F., “Point-driven modern Chladni figures with symmetry breaking”, Scientific Reports, 8(1), 1-13, 2018.
  • Benjamin, L., Fanuel, M., Hohmann, M., Heinlein, M., Erika, C., Waldner, M. J., ... & Schmidt, M., “Remote photoacoustic sensing using speckle-analysis”, Scientific Reports, 9(1), 1-11, 2019.
  • Hibaru, K., Morimoto, J., & Miyakawa, T., “Photoacoustic spectroscopy detected by piezoelectric transducer with resonator”, Japanese Journal of Applied Physics, 29(S1), 280, 1990.
  • Inan, I., Öztürk, Y., & Özdemir, İ. E., “Optical power measurement by using piezo microphone”, IEEE Innovations in Intelligent Systems and Applications Conference (ASYU), 2019, 1-4.
  • Farrow, M. M., Burnham, R. K., Auzanneau, M., Olsen, S. L., Purdie, N., & Eyring, E. M., “Piezoelectric detection of photoacoustic signals”, Applied Optics, 17(7), 1093-1098, 1978.
  • Billah, K. Y., & Scanlan, R. H., “Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks”, American Journal of Physics, 59(2), 118-124, 1991.
  • Mariūnas, M., “Methods for determining resonant and parametric excitation frequencies of nonlinear dynamic systems”, American Journal of Computational and Applied Mathematics, 10(2), 39-47, 2020.
  • Wilcken, K., & Kauppinen, J., “Optimization of a microphone for photoacoustic spectroscopy”, Applied Spectroscopy, 57(9), 1087-1092, 2003.
  • Paralı, Levent, et al. "A digital measurement system based on laser displacement sensor for piezoelectric ceramic discs vibration characterization." Optik, 127.1, 84-89,2016
  • Parali, L., & Sari, A., “Vibration modelling of piezoelectric actuator (PEA) using Simulink software”, IEEE 4th International Conference on Electrical and Electronic Engineering (ICEEE), 2017, 153-157.
  • Tam, A. C., “Applications of photoacoustic sensing techniques”, Reviews of Modern Physics, 58(2), 381, 1986.
  • Lin, Y. C., & Ma, C. C., “Experimental measurement and numerical analysis on resonant characteristics of piezoelectric disks with partial electrode designs”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51(8), 937-947, 2004.
  • Ma, Y., Qiao, S., Patimisco, P., Sampaolo, A., Wang, Y., Tittel, F. K., & Spagnolo, V., “In-plane quartz-enhanced photoacoustic spectroscopy”, Applied Physics Letters, 116(6), 061101, 2020.
  • Tabaru, T. E., Hayber, S. E., & Saracoglu, O. G., “Frequency Domain Analysis of Laser and Acoustic Pressure Parameters in Photoacoustic Wave Equation for Acoustic Pressure Sensor Designs”, Current Optics and Photonics, 2(3), 250-260, 2018.
  • Han, S. A., Lee, J., Lin, J., Kim, S. W., & Kim, J. H., “Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials”, Nano Energy, 57, 680-691, 2019. Veber, A. A., Lyashedko, A., Sholokhov, E., Trikshev, A., Kurkov, A., Pyrkov, Y., ... & Tsvetkov, V., “Laser vibrometry based on analysis of the speckle pattern from a remote object”, Applied Physics-Section B-Lasers and Optics, 105(3), 613, 2011.
  • Lai, H. M., & Young, K., “Theory of the pulsed optoacoustic technique”, The Journal of the Acoustical Society of America, 72(6), 2000-2007, 1982.
  • Liu, G., “Theory of the photoacoustic effect in condensed matter” Applied Optics, 21(5), 955-960, 1982.
  • Popov, I. A., & Veselov, L. M., “Mechanical vibration spectrum analysis by means of a speckle method”, Optics Communications, 105(3-4), 167-170, 1994.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Journals
Authors

Ömer Dinç 0000-0002-8014-4674

Emre Güralp 0000-0002-3211-3988

Yavuz Öztürk 0000-0002-9650-6350

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Dinç, Ö., Güralp, E., & Öztürk, Y. (2021). COMPARATIVE STUDY OF RESONANCE FREQUENCY OF CIRCULAR PIEZO MICROPHONE BASED ON PHOTOACOUSTIC, LASER SPECKLE, AND PIEZOELECTRIC EFFECTS. Mugla Journal of Science and Technology, 7(2), 52-58. https://doi.org/10.22531/muglajsci.953561
AMA Dinç Ö, Güralp E, Öztürk Y. COMPARATIVE STUDY OF RESONANCE FREQUENCY OF CIRCULAR PIEZO MICROPHONE BASED ON PHOTOACOUSTIC, LASER SPECKLE, AND PIEZOELECTRIC EFFECTS. MJST. December 2021;7(2):52-58. doi:10.22531/muglajsci.953561
Chicago Dinç, Ömer, Emre Güralp, and Yavuz Öztürk. “COMPARATIVE STUDY OF RESONANCE FREQUENCY OF CIRCULAR PIEZO MICROPHONE BASED ON PHOTOACOUSTIC, LASER SPECKLE, AND PIEZOELECTRIC EFFECTS”. Mugla Journal of Science and Technology 7, no. 2 (December 2021): 52-58. https://doi.org/10.22531/muglajsci.953561.
EndNote Dinç Ö, Güralp E, Öztürk Y (December 1, 2021) COMPARATIVE STUDY OF RESONANCE FREQUENCY OF CIRCULAR PIEZO MICROPHONE BASED ON PHOTOACOUSTIC, LASER SPECKLE, AND PIEZOELECTRIC EFFECTS. Mugla Journal of Science and Technology 7 2 52–58.
IEEE Ö. Dinç, E. Güralp, and Y. Öztürk, “COMPARATIVE STUDY OF RESONANCE FREQUENCY OF CIRCULAR PIEZO MICROPHONE BASED ON PHOTOACOUSTIC, LASER SPECKLE, AND PIEZOELECTRIC EFFECTS”, MJST, vol. 7, no. 2, pp. 52–58, 2021, doi: 10.22531/muglajsci.953561.
ISNAD Dinç, Ömer et al. “COMPARATIVE STUDY OF RESONANCE FREQUENCY OF CIRCULAR PIEZO MICROPHONE BASED ON PHOTOACOUSTIC, LASER SPECKLE, AND PIEZOELECTRIC EFFECTS”. Mugla Journal of Science and Technology 7/2 (December 2021), 52-58. https://doi.org/10.22531/muglajsci.953561.
JAMA Dinç Ö, Güralp E, Öztürk Y. COMPARATIVE STUDY OF RESONANCE FREQUENCY OF CIRCULAR PIEZO MICROPHONE BASED ON PHOTOACOUSTIC, LASER SPECKLE, AND PIEZOELECTRIC EFFECTS. MJST. 2021;7:52–58.
MLA Dinç, Ömer et al. “COMPARATIVE STUDY OF RESONANCE FREQUENCY OF CIRCULAR PIEZO MICROPHONE BASED ON PHOTOACOUSTIC, LASER SPECKLE, AND PIEZOELECTRIC EFFECTS”. Mugla Journal of Science and Technology, vol. 7, no. 2, 2021, pp. 52-58, doi:10.22531/muglajsci.953561.
Vancouver Dinç Ö, Güralp E, Öztürk Y. COMPARATIVE STUDY OF RESONANCE FREQUENCY OF CIRCULAR PIEZO MICROPHONE BASED ON PHOTOACOUSTIC, LASER SPECKLE, AND PIEZOELECTRIC EFFECTS. MJST. 2021;7(2):52-8.

5975f2e33b6ce.png
Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri ve Teknoloji Dergisi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.