Research Article
BibTex RIS Cite

PHOTOVOLTAIC PRODUCTION TECHNOLOGIES AND ASSESSMENT OF SOLAR CELL EFFICIENCIES FOR NANOSTRUCTURED COBALT DOPED ZINC OXIDES

Year 2015, Volume: 1 Issue: 2, 22 - 26, 05.11.2015
https://doi.org/10.22531/muglajsci.210006

Abstract

In this study, the synthesis and characterization of cobalt doped zinc oxide (Co:ZnO) nanocomposite materials were achieved using hydrothermal method from zinc nitrate and Cobalt (II) chloride precursors. Zinc oxide nanostructures were doped with cobalt  in different dopant concentrations. The Co concentration was varied from  0.5 to 1.5 mol % in ZnO crystalline structure. Cobalt doped ZnO materials were analysed using XRD, SEM and EDX. Also DSSC performances of cobalt doped ZnOs were studied. Best efficiency was obtained with 1% doped Co:ZnO as 3.48 mA/cm2 of short circuit photocurrent density, 600 mV of open circuit voltage, 0.56 of filling factor, 1.17 of overall conversion efficiency. 

References

  • -
  • E. Guillen, L.M. Peter, J.A. Anta, J. Phys. Chem. C 115 (2011), 22622–22632.
  • B. O’Regan, M. Graetzel, Nature 353 (1991), 737–740.
  • H. Tsubomura, M. Matsumura, Y. Nomunara, T. Amamiya, Nature 261 (1976), 402–403.
  • C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, J. Phys. Chem. B 105 (2001), 5585–5588.
  • R. Katoh, A. Furube, T. Yoshihara, K. Hata, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. Tachiya, J. Phys. Chem. B 108 (2004), 4818–4822.
  • D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 105 (1998), 399–401.
  • C.H. Seager, S.M. Myers, J. Appl. Phys. 94 (2003), 2888– 2894. L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger, F. Levy, J. Appl. Phys. 75 (1994), 633–635.
  • R. Bekci, A. Karslı, C. Cakir, H. Sarıca, A. Guloglu, S. Gunes, S. Erten-Ela, Applied Energy 96 (2012) 417-421.
  • S. Erten-Ela, International Journal of Photoenergy, Article ID 436831 (2013) 1-6.
  • Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98 (2005) 041301.
  • K. Ocakoglu, E. Harputlu, P. Guloglu, S. Erten-Ela, Synthetic Met. 162 (2012) 2125-2133.
  • M. Graetzel, Photoelectrochemical cells, Nature 414 (2001) 338-344.
  • C. Song, F. Zeng, K.W. Geng, X.B. Wang, Y.X. Shen, F. Pan, J. Magn. Magn. Mater. 309 (2007) 25.
  • H. Sakuma, Y. Watanabe, K. Aramaki, K.S. Yun, K. Ishii, Y. Ikeda, H. Kondo, Mater. Sci. Eng. B 173 (2010) 7.
  • X.Y. Xu, C.B. Cao, J. Magn. Magn. Mater. 321 (2009) 2216. Y. Zhang, E.W. Shi, Z.Z. Chen, Mater. Sci. Semicond. Process 13 (2010) 132. [15] S.K. Lathika Devi, K. Sudarsanakumar, J. Lumin. 130
  • X.L. Zhang, R. Qiao, J.C. Kim, Y.S. Kang, Cryst. Growth Des. 8 (2008) 2609.
  • A. Singhal, S.N. Achary, J. Manjanna, S. Chatterjee, P. Ayyub, A.K. Tyagi, J. Phys. Chem. C 114 (2010) 3422.

KOBALT KATKILI ZnO NANOYAPILAR İÇİN FOTOVOLTAİK ÜRETİM TEKNOLOJİLERİ VE GÜNEŞ HÜCRE VERİMLERİNİN DEĞERLENDİRİLMESİ

Year 2015, Volume: 1 Issue: 2, 22 - 26, 05.11.2015
https://doi.org/10.22531/muglajsci.210006

Abstract

Bu çalışmada Fotovoltaik Üretim Teknolojileri için Kobalt doplu ZnO nanomateryali hidrotermal proses kullanılarak sentezlenmiş ve üretilen fotovoltaiklerin verimleri değerlendirilmiştir. Kobalt doplu ZnO nanomateryaller katkılama oranı % 0.5 den % 1.5’e kadar değişen verimlerde sentezlenmiştir. Katkılanan kobalt doplu ZnO nanomateryaller XRD, SEM ve EDX teknikleri ile analizlenmiştir. SEM görüntüleri kobalt doplu ZnO nanoyapıların morfolojilerinin nanorod düzeyinden nanotabaka morfolojisine değişimini ispatlamıştır. EDX analizleri kobalt doplu ZnO yapıların oluşumunu kanıtlamıştır. Fotovoltaik enerji dönüşüm verimleri analizlenmiştir. Bu çalışmada % 1 kobalt katkılama oranı için 3.48 mA/cm2 kısa devre akımı, 600 mV açık devre voltajı, 0.56 dolum faktörü ve % 1.17 verim ile en yüksek verim rapor edilmiştir

References

  • -
  • E. Guillen, L.M. Peter, J.A. Anta, J. Phys. Chem. C 115 (2011), 22622–22632.
  • B. O’Regan, M. Graetzel, Nature 353 (1991), 737–740.
  • H. Tsubomura, M. Matsumura, Y. Nomunara, T. Amamiya, Nature 261 (1976), 402–403.
  • C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, J. Phys. Chem. B 105 (2001), 5585–5588.
  • R. Katoh, A. Furube, T. Yoshihara, K. Hata, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. Tachiya, J. Phys. Chem. B 108 (2004), 4818–4822.
  • D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 105 (1998), 399–401.
  • C.H. Seager, S.M. Myers, J. Appl. Phys. 94 (2003), 2888– 2894. L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger, F. Levy, J. Appl. Phys. 75 (1994), 633–635.
  • R. Bekci, A. Karslı, C. Cakir, H. Sarıca, A. Guloglu, S. Gunes, S. Erten-Ela, Applied Energy 96 (2012) 417-421.
  • S. Erten-Ela, International Journal of Photoenergy, Article ID 436831 (2013) 1-6.
  • Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98 (2005) 041301.
  • K. Ocakoglu, E. Harputlu, P. Guloglu, S. Erten-Ela, Synthetic Met. 162 (2012) 2125-2133.
  • M. Graetzel, Photoelectrochemical cells, Nature 414 (2001) 338-344.
  • C. Song, F. Zeng, K.W. Geng, X.B. Wang, Y.X. Shen, F. Pan, J. Magn. Magn. Mater. 309 (2007) 25.
  • H. Sakuma, Y. Watanabe, K. Aramaki, K.S. Yun, K. Ishii, Y. Ikeda, H. Kondo, Mater. Sci. Eng. B 173 (2010) 7.
  • X.Y. Xu, C.B. Cao, J. Magn. Magn. Mater. 321 (2009) 2216. Y. Zhang, E.W. Shi, Z.Z. Chen, Mater. Sci. Semicond. Process 13 (2010) 132. [15] S.K. Lathika Devi, K. Sudarsanakumar, J. Lumin. 130
  • X.L. Zhang, R. Qiao, J.C. Kim, Y.S. Kang, Cryst. Growth Des. 8 (2008) 2609.
  • A. Singhal, S.N. Achary, J. Manjanna, S. Chatterjee, P. Ayyub, A.K. Tyagi, J. Phys. Chem. C 114 (2010) 3422.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Journals
Authors

Sule Erten Ela

Publication Date November 5, 2015
Published in Issue Year 2015 Volume: 1 Issue: 2

Cite

APA Erten Ela, S. (2015). PHOTOVOLTAIC PRODUCTION TECHNOLOGIES AND ASSESSMENT OF SOLAR CELL EFFICIENCIES FOR NANOSTRUCTURED COBALT DOPED ZINC OXIDES. Mugla Journal of Science and Technology, 1(2), 22-26. https://doi.org/10.22531/muglajsci.210006
AMA Erten Ela S. PHOTOVOLTAIC PRODUCTION TECHNOLOGIES AND ASSESSMENT OF SOLAR CELL EFFICIENCIES FOR NANOSTRUCTURED COBALT DOPED ZINC OXIDES. MJST. December 2015;1(2):22-26. doi:10.22531/muglajsci.210006
Chicago Erten Ela, Sule. “PHOTOVOLTAIC PRODUCTION TECHNOLOGIES AND ASSESSMENT OF SOLAR CELL EFFICIENCIES FOR NANOSTRUCTURED COBALT DOPED ZINC OXIDES”. Mugla Journal of Science and Technology 1, no. 2 (December 2015): 22-26. https://doi.org/10.22531/muglajsci.210006.
EndNote Erten Ela S (December 1, 2015) PHOTOVOLTAIC PRODUCTION TECHNOLOGIES AND ASSESSMENT OF SOLAR CELL EFFICIENCIES FOR NANOSTRUCTURED COBALT DOPED ZINC OXIDES. Mugla Journal of Science and Technology 1 2 22–26.
IEEE S. Erten Ela, “PHOTOVOLTAIC PRODUCTION TECHNOLOGIES AND ASSESSMENT OF SOLAR CELL EFFICIENCIES FOR NANOSTRUCTURED COBALT DOPED ZINC OXIDES”, MJST, vol. 1, no. 2, pp. 22–26, 2015, doi: 10.22531/muglajsci.210006.
ISNAD Erten Ela, Sule. “PHOTOVOLTAIC PRODUCTION TECHNOLOGIES AND ASSESSMENT OF SOLAR CELL EFFICIENCIES FOR NANOSTRUCTURED COBALT DOPED ZINC OXIDES”. Mugla Journal of Science and Technology 1/2 (December 2015), 22-26. https://doi.org/10.22531/muglajsci.210006.
JAMA Erten Ela S. PHOTOVOLTAIC PRODUCTION TECHNOLOGIES AND ASSESSMENT OF SOLAR CELL EFFICIENCIES FOR NANOSTRUCTURED COBALT DOPED ZINC OXIDES. MJST. 2015;1:22–26.
MLA Erten Ela, Sule. “PHOTOVOLTAIC PRODUCTION TECHNOLOGIES AND ASSESSMENT OF SOLAR CELL EFFICIENCIES FOR NANOSTRUCTURED COBALT DOPED ZINC OXIDES”. Mugla Journal of Science and Technology, vol. 1, no. 2, 2015, pp. 22-26, doi:10.22531/muglajsci.210006.
Vancouver Erten Ela S. PHOTOVOLTAIC PRODUCTION TECHNOLOGIES AND ASSESSMENT OF SOLAR CELL EFFICIENCIES FOR NANOSTRUCTURED COBALT DOPED ZINC OXIDES. MJST. 2015;1(2):22-6.

5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license