Research Article
BibTex RIS Cite

YAPAY SİNİR AĞLARI İLE PV MODÜL YÜZEY SICAKLIĞININ TAHMİNİ

Year 2016, Volume: 2 Issue: 2, 15 - 18, 16.12.2016
https://doi.org/10.22531/muglajsci.283611

Abstract

Bu çalışmada, yapay sinir ağları (YSA) yöntemi
kullanarak bir fotovoltaik (PV) panel yüzey sıcaklığının tahmininin yapılması
amaçlanmaktadır. Deneysel olarak elde edilen PV verileri kullanılarak YSA’nın
modelleme doğruluğu değerlendirilmiştir. Yapay Sinir Ağlarını (YSA) eğitmek
için, dış sıcaklık, güneş radyasyonu ve rüzgâr hızı değerleri girdi ve yüzey
sıcaklığı çıktı olarak kullanılmıştır. YSA PV panel yüzey sıcaklığının tahmini
için kullanılmıştır. Leveberg-Marquardt (LM) algoritmaları kullanılarak ileri
besleme tipi yapay sinir ağları ile eğitilmiştir. İki tane geri yayılım
(backpropagation) ağ tipi YSA algoritması da kullanışmıştır ve onların
performansları LM algoritmasının tahmini ile karşılaştırılmıştır. Yapay sinir
ağının eğitilmesi için deneysel verilerin üçte ikisi ve geri kalan üçte biri
ise test için kullanılmıştır. Ayrıca, Scaled Conjugate Gradient (SCG)
Backpropagation ve Resilient Backpropagation (RB)  tipi YSA algoritmaları LM algortimasının
performansı ile karşılaştırılması için kullanılmıştır.Bu üç tip yapay sinir
ağları algoritmalarının performansı karşılaştırılmıştır ve ortalama hata
oranları %0.012177 ila %0.005962 aralığında elde edilmiştir. En iyi tahmini LM
algoritması vermektedir. Yapay sinir ağlarının PV yüzey sıcaklığı tahmininde,
konvansiyonel bağıntı metotlarından daha iyi sonuç vermiştir. Bu çalışma, PV
yüzey sıcaklığını tahmin etmek için yapay sinir ağlarının etkili bir şeklide
kullanılabileceğini göstermiştir.

References

  • http://www.solarfield.com.tr/page/111/fotovoltaik-nedir.html
  • Jones, A.D., Underwood, C.P., "A thermal model for photovoltaic systems", Solar Energy, 70(4), 349–359, 2001.
  • Alonso Garcı, M.C., Balenzategui, J.L., "Estimation ofphotovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations", Renewable Energy, 29, 1997–2010, 2004.
  • Skoplaki, E., Palyvos, J.A., "Operating temperature of photovoltaic modules: A survey of pertinent correlations" Renewable Energy, 34, 23–29, 2009.
  • Schott, T., "Operation temperatures of PV modules", In: Proceedings of the sixth E.C. photovoltaic solar energy conference, London, UK, April 15–19; p. 392–6, 1985.
  • Servant, J.M., "Calculation of the cell temperature for photovoltaic modules from climatic data", In: Bilgen E, Hollands KGT, editors. Proceedings of the 9th biennial congress of ISES – Intersol 85, Montreal, Canada, extended abstracts, p. 370, 1985.
  • Duffie, J.A, Beckman, W.A., "Solar energy thermal processes", 2nd ed. Hoboken (NJ): Wiley; 1991.
  • Tiwari, GN., Solar energy – fundamentals, design, modelling and applications. Pangbourne (UK): Alpha Science; 2002. p. 450.
  • Hove, T., "A method for predicting long-term average performance of photovoltaic systems", Renewable Energy, 21, 207–29, 2000.
  • Del Cueto, J.A., "Model for the thermal characteristics of flat-plate photovoltaic modules deployed at fixed tilt", In: Proceedings of the 28th IEEE photovoltaic specialists conference, Anchorage, AL, September 15–22; p. 1441–5, 2000.
  • Kou, Q., Klein, S.A., Beckman, W.A., "A method for estimating the long-term performance of direct-coupled PV pumping systems", Solar Energy, 64, 33–40, 1998.
  • Eicker, U., "Solar technologies for buildings", Chichester (UK): Wiley; 2003. Section 5.9.
  • Tiwari, A., Sodha, M.S., "Performance evaluation of a solar PV/T system: an experimental validation", Solar Energy, 80, 751–9, 2006.
  • Tiwari, A., Sodha, M.S., "Performance evaluation of a solar PV/T system: a parametric study", Renewable Energy 31, 2460–74, 2006.
  • ASTM. Method for determining the nominal operating cell temperature (NOCT) of an array or module. E1036M, Annex A.1., p. 544, 1999 (withdrawn recently).
  • Duffie, J.A., Beckman, W.A., "Solar energy thermal processes", 3rd ed. Hoboken (NJ): Wiley; 2006.
  • Davis, M.W., Dougherty, B.P., Fanney, A.H., "Prediction of building integrated photovoltaic cell temperatures", Transactions of the ASME – Journal of Solar Energy Engineering, 123, 200–10, 2001.
  • Kocyigit, N., "Fault and sensor error diagnostic strategies for a vapor compression refrigeration system by using fuzzy inference systems and artificial neural network", Int. J. Refrigeration, 50, 69-79, 2015.

ESTIMATION OF PV MODULE SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORKS

Year 2016, Volume: 2 Issue: 2, 15 - 18, 16.12.2016
https://doi.org/10.22531/muglajsci.283611

Abstract

This study aimed to use the artificial neural network (ANN) method to estimate the surface temperature of a photovoltaic (PV) panel. Using the experimentally obtained PV data, the accuracy of the ANN model was evaluated. To train the artificial neural network (ANN), outer temperature solar radiation and wind speed values were inputs and surface temperature was an output. The ANN was used to estimate PV panel surface temperature. Using the Levenberg-Marquardt (LM) algorithm the feed forward artificial neural network was trained. Two back propagation type ANN algorithms were used and their performance was compared with the estimate from the LM algorithm. To train the artificial neural network, experimental data were used for two thirds with the remaining third used for testing. Additionally scaled conjugate gradient (SCG) back propagation and resilient back propagation (RB) type ANN algorithms were used for comparison with the LM algorithm. The performances of these three types of artificial neural network were compared and mean error rates of between 0.005962 and 0.012177% were obtained. The best estimate was produced by the LM algorithm. Estimation of PV surface temperature with artificial neural networks provides better results than conventional correlation methods. This study showed that artificial neural networks may be effectively used to estimate PV surface temperature.

References

  • http://www.solarfield.com.tr/page/111/fotovoltaik-nedir.html
  • Jones, A.D., Underwood, C.P., "A thermal model for photovoltaic systems", Solar Energy, 70(4), 349–359, 2001.
  • Alonso Garcı, M.C., Balenzategui, J.L., "Estimation ofphotovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations", Renewable Energy, 29, 1997–2010, 2004.
  • Skoplaki, E., Palyvos, J.A., "Operating temperature of photovoltaic modules: A survey of pertinent correlations" Renewable Energy, 34, 23–29, 2009.
  • Schott, T., "Operation temperatures of PV modules", In: Proceedings of the sixth E.C. photovoltaic solar energy conference, London, UK, April 15–19; p. 392–6, 1985.
  • Servant, J.M., "Calculation of the cell temperature for photovoltaic modules from climatic data", In: Bilgen E, Hollands KGT, editors. Proceedings of the 9th biennial congress of ISES – Intersol 85, Montreal, Canada, extended abstracts, p. 370, 1985.
  • Duffie, J.A, Beckman, W.A., "Solar energy thermal processes", 2nd ed. Hoboken (NJ): Wiley; 1991.
  • Tiwari, GN., Solar energy – fundamentals, design, modelling and applications. Pangbourne (UK): Alpha Science; 2002. p. 450.
  • Hove, T., "A method for predicting long-term average performance of photovoltaic systems", Renewable Energy, 21, 207–29, 2000.
  • Del Cueto, J.A., "Model for the thermal characteristics of flat-plate photovoltaic modules deployed at fixed tilt", In: Proceedings of the 28th IEEE photovoltaic specialists conference, Anchorage, AL, September 15–22; p. 1441–5, 2000.
  • Kou, Q., Klein, S.A., Beckman, W.A., "A method for estimating the long-term performance of direct-coupled PV pumping systems", Solar Energy, 64, 33–40, 1998.
  • Eicker, U., "Solar technologies for buildings", Chichester (UK): Wiley; 2003. Section 5.9.
  • Tiwari, A., Sodha, M.S., "Performance evaluation of a solar PV/T system: an experimental validation", Solar Energy, 80, 751–9, 2006.
  • Tiwari, A., Sodha, M.S., "Performance evaluation of a solar PV/T system: a parametric study", Renewable Energy 31, 2460–74, 2006.
  • ASTM. Method for determining the nominal operating cell temperature (NOCT) of an array or module. E1036M, Annex A.1., p. 544, 1999 (withdrawn recently).
  • Duffie, J.A., Beckman, W.A., "Solar energy thermal processes", 3rd ed. Hoboken (NJ): Wiley; 2006.
  • Davis, M.W., Dougherty, B.P., Fanney, A.H., "Prediction of building integrated photovoltaic cell temperatures", Transactions of the ASME – Journal of Solar Energy Engineering, 123, 200–10, 2001.
  • Kocyigit, N., "Fault and sensor error diagnostic strategies for a vapor compression refrigeration system by using fuzzy inference systems and artificial neural network", Int. J. Refrigeration, 50, 69-79, 2015.
There are 18 citations in total.

Details

Subjects Engineering
Journal Section Journals
Authors

Can Coskun

Necati Koçyiğit This is me

Zuhal Oktay

Publication Date December 16, 2016
Published in Issue Year 2016 Volume: 2 Issue: 2

Cite

APA Coskun, C., Koçyiğit, N., & Oktay, Z. (2016). ESTIMATION OF PV MODULE SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORKS. Mugla Journal of Science and Technology, 2(2), 15-18. https://doi.org/10.22531/muglajsci.283611
AMA Coskun C, Koçyiğit N, Oktay Z. ESTIMATION OF PV MODULE SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORKS. MJST. December 2016;2(2):15-18. doi:10.22531/muglajsci.283611
Chicago Coskun, Can, Necati Koçyiğit, and Zuhal Oktay. “ESTIMATION OF PV MODULE SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORKS”. Mugla Journal of Science and Technology 2, no. 2 (December 2016): 15-18. https://doi.org/10.22531/muglajsci.283611.
EndNote Coskun C, Koçyiğit N, Oktay Z (December 1, 2016) ESTIMATION OF PV MODULE SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORKS. Mugla Journal of Science and Technology 2 2 15–18.
IEEE C. Coskun, N. Koçyiğit, and Z. Oktay, “ESTIMATION OF PV MODULE SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORKS”, MJST, vol. 2, no. 2, pp. 15–18, 2016, doi: 10.22531/muglajsci.283611.
ISNAD Coskun, Can et al. “ESTIMATION OF PV MODULE SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORKS”. Mugla Journal of Science and Technology 2/2 (December 2016), 15-18. https://doi.org/10.22531/muglajsci.283611.
JAMA Coskun C, Koçyiğit N, Oktay Z. ESTIMATION OF PV MODULE SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORKS. MJST. 2016;2:15–18.
MLA Coskun, Can et al. “ESTIMATION OF PV MODULE SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORKS”. Mugla Journal of Science and Technology, vol. 2, no. 2, 2016, pp. 15-18, doi:10.22531/muglajsci.283611.
Vancouver Coskun C, Koçyiğit N, Oktay Z. ESTIMATION OF PV MODULE SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORKS. MJST. 2016;2(2):15-8.

Cited By













5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license