Research Article
BibTex RIS Cite

TÜRKİYE’DE YEREL VE ULUSLARARASI HAVA TAŞIMACILIĞI YAPISININ AĞ ANALİZİ İLE İNCELENMESİ

Year 2018, Volume: 4 Issue: 2, 148 - 155, 19.12.2018
https://doi.org/10.22531/muglajsci.441319

Abstract

Hava taşımacılığının etkinliği düşünüldüğünde, uçuş rotalarının dinamiklerini incelenmesi, son zamanlarda, hayli ilgi çekmektedir. Küresel ölçekte çok sayıda çalışma yapılsa da, bazı merkez havalimanlarının şehirlerarası ve ülkeler arası taşımacılıkta daha fazla düşünülmesi gerekmektedir. Song ve Yeo’nun çalışmalarına göre, Türkiye’de bulunan İstanbul şehri, dünyada 1.060 havalimanı arasında en yüksek merkezilik ve ilk 30 havalimanı arasında en yüksek arasındalık merkeziliğine sahiptir. Bu çalışmada, topografik özelliklerine bağlı olarak bu ülkenin hava yolu ağ yapısının incelenmesi hedeflenmektedir. Bu amaçla, sosyal ağ analizi, verinin korelasyon yapısını tanımlamada görselleştirme araçları ve bir analiz yöntemi olarak kullanılmıştır. Böylece, havaalanları arasında rota bağlantılarını araştırarak, yukarıda bahsedilen analizde ağ seviyesindeki ve düğüm seviyesindeki bazı ölçütler açıklanmıştır. Ek olarak, ağ haritaları, hava yolları yapısını daha iyi anlamak için tasvir edilmiştir. Sonuçlar, İstanbul'un 2014 yılı için Türkiye'nin ampirik verilerine göre hem yerel hem de uluslararası taşımacılık açısından havaalanları arasında büyük bir etkiye sahip olduğunu göstermektedir. Ülkelere göre sınıflandırıldığında ise, Almanya ve Kıbrıs, Türkiye ile en büyük bağlantı ölçüm sonuçlarına sahiptir.

References

  • [1] Wei, C., Minghua, H., Dong, B., Wang, Y. and Feng, C. “Empirical analysis of airport network and critical airports”, Chinese Journal of Aeronautics, 29(2), 512-519, 2016.
  • [2] Song, M. G. and Yeo, G. T. “Analysis of the Airport Network Characteristics of Major Airports”, The Asian Journal of Shipping and Logistics, 33(3), 117-125, 2017.
  • [3] Verma, T., Araujo, N.A.M. and Herrmann, H.J. “Revealing the structure of the world airline network”, Scientific Reports, 4, Article number: 5638, 2014.
  • [4] Lordan, O. and Sallan, J.M. “Analyzing the multilevel structure of the European airport network”, Chinese Journal of Aeronautics, 30(2), 554-560, 2017.
  • [5] Wang, J., Mo, H., Wang, F. and Jin, F. “Exploring the network structure and nodal centrality of China’s air transport network: A complex network approach”, Journal of Transport Geography, 19(4), 712-721, 2011.
  • [6] Bagler, G. “Analysis of the airport network of India as a complex weighted network”, Physica A: Statistical Mechanics and its Applications, 387(12), 2972-2980, 2008.
  • [7] da Rocha L.E.C., “Structural evolution of the Brazilian airport network”, Journal of Statistical Mechanics: Theory and Experiment, 4, P04020, 2009.
  • [8] Cheung, D.P. and Gunes, M.H. “A Complex Network Analysis of the United States Air Transportation”, 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 26-29 August 2012, İstanbul, pp. 699-701, 2012.
  • [9] Guimerá, R. and Amaral, L.A.N. “Modeling the world-wide airport network”, The European Physical Journal B, 38, 381–385, 2004.
  • [10] Nikolaev, A.G., Razib, R. and Kucheriya, A. “On efficient use of entropy centrality for social network analysis and community detection”, Social Networks, 40, 154-162, 2015.
  • [11] De Brun, A. and McAuliffe, E. “Social Network Analysis as a methodological approach to explore health systems: A case study exploring support among senior managers/executives in a hospital network”, International Journal of Environmental Research and Public Health, 15(3), 511, 2018.
  • [12] Fu, Y-H., Huang, C-Y. and Sun, C-T. “Using global diversity and local features to identify influential social network spreaders”, 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), 17-20 August 2014, China: Beijing, pp. 948-953, 2014.
  • [13] Ravsaz, E. and Barabasi, A.-L. “Hierarchical organization in complex networks”, Physical Review E, 67, 026112-1-7, 2003.
  • [14] Li, W. and Cai, X. “Statistical analysis of airport network of China”, Physical Review E, 69, 1–6, 2004.

THE NETWORK ANALYSIS OF THE DOMESTIC AND INTERNATIONAL AIR TRANSPORTATION STRUCTURE OF TURKEY

Year 2018, Volume: 4 Issue: 2, 148 - 155, 19.12.2018
https://doi.org/10.22531/muglajsci.441319

Abstract

Considering the effectiveness of air
transportation, the investigation of the dynamics of flight routes are having a
great attention, lately. Even several studies are conducted in a global scale,
some hubs are required more consideration in inter-city and inter-country
transportation. According to the study of [Song and Yeo], İstanbul located in
Turkey has the maximum degree centrality among 1.060 airports and maximum
betweenness centrality among the top 30 airports. In this study, we aim to see
the air transportation network structure deeply for this country depending on
its topographic characteristics. For this purpose, social network analysis is
used as an analysis method and visualization tools to describe the correlation
structure of the data. Thus, we illustrate some of the network-level and
node-level metrics in aforementioned analysis by exploring route connections
among airports. Additionally, the network maps are depicted to better
understand the air routes structure. The results indicate that İstanbul has a
huge impact among airports in terms of both domestic and international
transportation depending on the empirical data of Turkey for the year of 2014.
Classifying by countries, Germany and Cyprus has the largest connection
measurement results with Turkey.

References

  • [1] Wei, C., Minghua, H., Dong, B., Wang, Y. and Feng, C. “Empirical analysis of airport network and critical airports”, Chinese Journal of Aeronautics, 29(2), 512-519, 2016.
  • [2] Song, M. G. and Yeo, G. T. “Analysis of the Airport Network Characteristics of Major Airports”, The Asian Journal of Shipping and Logistics, 33(3), 117-125, 2017.
  • [3] Verma, T., Araujo, N.A.M. and Herrmann, H.J. “Revealing the structure of the world airline network”, Scientific Reports, 4, Article number: 5638, 2014.
  • [4] Lordan, O. and Sallan, J.M. “Analyzing the multilevel structure of the European airport network”, Chinese Journal of Aeronautics, 30(2), 554-560, 2017.
  • [5] Wang, J., Mo, H., Wang, F. and Jin, F. “Exploring the network structure and nodal centrality of China’s air transport network: A complex network approach”, Journal of Transport Geography, 19(4), 712-721, 2011.
  • [6] Bagler, G. “Analysis of the airport network of India as a complex weighted network”, Physica A: Statistical Mechanics and its Applications, 387(12), 2972-2980, 2008.
  • [7] da Rocha L.E.C., “Structural evolution of the Brazilian airport network”, Journal of Statistical Mechanics: Theory and Experiment, 4, P04020, 2009.
  • [8] Cheung, D.P. and Gunes, M.H. “A Complex Network Analysis of the United States Air Transportation”, 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 26-29 August 2012, İstanbul, pp. 699-701, 2012.
  • [9] Guimerá, R. and Amaral, L.A.N. “Modeling the world-wide airport network”, The European Physical Journal B, 38, 381–385, 2004.
  • [10] Nikolaev, A.G., Razib, R. and Kucheriya, A. “On efficient use of entropy centrality for social network analysis and community detection”, Social Networks, 40, 154-162, 2015.
  • [11] De Brun, A. and McAuliffe, E. “Social Network Analysis as a methodological approach to explore health systems: A case study exploring support among senior managers/executives in a hospital network”, International Journal of Environmental Research and Public Health, 15(3), 511, 2018.
  • [12] Fu, Y-H., Huang, C-Y. and Sun, C-T. “Using global diversity and local features to identify influential social network spreaders”, 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), 17-20 August 2014, China: Beijing, pp. 948-953, 2014.
  • [13] Ravsaz, E. and Barabasi, A.-L. “Hierarchical organization in complex networks”, Physical Review E, 67, 026112-1-7, 2003.
  • [14] Li, W. and Cai, X. “Statistical analysis of airport network of China”, Physical Review E, 69, 1–6, 2004.
There are 14 citations in total.

Details

Primary Language English
Journal Section Journals
Authors

Serpil Kılıç Depren 0000-0003-4737-7131

Fulya Gokalp Yavuz 0000-0002-7750-9767

Publication Date December 19, 2018
Published in Issue Year 2018 Volume: 4 Issue: 2

Cite

APA Kılıç Depren, S., & Gokalp Yavuz, F. (2018). THE NETWORK ANALYSIS OF THE DOMESTIC AND INTERNATIONAL AIR TRANSPORTATION STRUCTURE OF TURKEY. Mugla Journal of Science and Technology, 4(2), 148-155. https://doi.org/10.22531/muglajsci.441319
AMA Kılıç Depren S, Gokalp Yavuz F. THE NETWORK ANALYSIS OF THE DOMESTIC AND INTERNATIONAL AIR TRANSPORTATION STRUCTURE OF TURKEY. MJST. December 2018;4(2):148-155. doi:10.22531/muglajsci.441319
Chicago Kılıç Depren, Serpil, and Fulya Gokalp Yavuz. “THE NETWORK ANALYSIS OF THE DOMESTIC AND INTERNATIONAL AIR TRANSPORTATION STRUCTURE OF TURKEY”. Mugla Journal of Science and Technology 4, no. 2 (December 2018): 148-55. https://doi.org/10.22531/muglajsci.441319.
EndNote Kılıç Depren S, Gokalp Yavuz F (December 1, 2018) THE NETWORK ANALYSIS OF THE DOMESTIC AND INTERNATIONAL AIR TRANSPORTATION STRUCTURE OF TURKEY. Mugla Journal of Science and Technology 4 2 148–155.
IEEE S. Kılıç Depren and F. Gokalp Yavuz, “THE NETWORK ANALYSIS OF THE DOMESTIC AND INTERNATIONAL AIR TRANSPORTATION STRUCTURE OF TURKEY”, MJST, vol. 4, no. 2, pp. 148–155, 2018, doi: 10.22531/muglajsci.441319.
ISNAD Kılıç Depren, Serpil - Gokalp Yavuz, Fulya. “THE NETWORK ANALYSIS OF THE DOMESTIC AND INTERNATIONAL AIR TRANSPORTATION STRUCTURE OF TURKEY”. Mugla Journal of Science and Technology 4/2 (December 2018), 148-155. https://doi.org/10.22531/muglajsci.441319.
JAMA Kılıç Depren S, Gokalp Yavuz F. THE NETWORK ANALYSIS OF THE DOMESTIC AND INTERNATIONAL AIR TRANSPORTATION STRUCTURE OF TURKEY. MJST. 2018;4:148–155.
MLA Kılıç Depren, Serpil and Fulya Gokalp Yavuz. “THE NETWORK ANALYSIS OF THE DOMESTIC AND INTERNATIONAL AIR TRANSPORTATION STRUCTURE OF TURKEY”. Mugla Journal of Science and Technology, vol. 4, no. 2, 2018, pp. 148-55, doi:10.22531/muglajsci.441319.
Vancouver Kılıç Depren S, Gokalp Yavuz F. THE NETWORK ANALYSIS OF THE DOMESTIC AND INTERNATIONAL AIR TRANSPORTATION STRUCTURE OF TURKEY. MJST. 2018;4(2):148-55.

5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license