Research Article
BibTex RIS Cite

SEASONAL VARIATION of the SPECTRAL IRRADIANCE for the PROVINCE of MUĞLA

Year 2018, Volume: 4 Issue: 2, 231 - 235, 19.12.2018
https://doi.org/10.22531/muglajsci.455566

Abstract

Calculation of the
amount of energy from the sun as the energy source of the world is very
important in terms of determining the efficiency of photovoltaic (PV) systems.
At air mass zero solar spectral irradiance values have received a great deal of
attention in recent years and are given in the wavelength range 0.2-4.0
µm.  The amount of incoming sunlight can
be calculated with different mathematical models. In this study, a mathematical
modelling using SPCTRL 2 program will be discussed. The model has many
variables in determining the quantity of sunlight coming in the atmosphere.
With this model, the amount of solar energy falling on any on spot on the
Earth’s surface can be calculated and graphically modelled. In this study,
direct, indirect and total (global) solar energy amounts coming from horizontal
and sloping surfaces for Mugla were calculated depending on the wavelength.
Horizontal and 30° inclined surfaces were calculated separately for winter,
spring, summer and autumn seasons for Muğla Province. As
a result, the amount of solar radiance for Muğla province was determined by
mathematical modelling and the general conditions for the establishment of
suitable photovoltaic system were determined.

References

  • REFERENCES[1] R. Eke, T.R. Betts, R., Gottschalg “Spectral irradiance effects on the outdoor performance of photovoltaic modules”[2] Gottschalg R, Betts TR, Infield DG, Kearney MJ. “The effect of spectral variations onthe performance parameters of single and double junction amorphous silicon solarcells.” Sol Energy, Mater Sol Cells, 2005;85:415–28.[3] Bird, R. E., "A Simple Spectral Model for Direct Normal and Diffuse Horizontal Irradiance," Solar Energy, Vol. 32, 1984, pp. 461-471.[4] International Electro-Technical Commission. Standard IEC 60904-3: Photovoltaic Devices. Part 3: Measurement Principles for Terrestrial Photovoltaic (PV) Solar Devices With Reference Spectral Irradiance Data (Ed. 2; 2008.)[5] R.Bird, C. Riordan, “Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth's Surface for Cloudless Atmospheres”, Solar Energy Research Institute A Division of Midwest Research Institute 1617 Cole Boulevard Golden, Colorado 80401[6] Leckner, B., "The Spectral Distribution of Solar Radiation at the Earth's Surface--Elements of a Model," Solar Energy, Vol. 20, 1978, pp. 143-150.[7] Brine, D. T., and M. Iqbal, "Solar Spectral Diffuse Irradiance Under Cloudless Skies," Solar Energy, Vol. 30, 1983, pp. 447-453.[8] Justus, C. G., and M. V. Paris, "A Model for Solar Spectral Irradiance at the Bottom and Top of a Cloudless Atmosphere," submitted to J. of Climate and Applied Meteorology, 1984.[9] Hay, J. E., and J. A. Davies, "Calculation of the Solar Radiation Incident on an Inclined Surface," in Proceedings, First Canadian Solar Radiation Data Workshop, J. E. Hay and T. K. Won, eds Toronto, Ontario, Canada, 1978.[10] Iqbal, M., “An Introduction to Solar Radiation”, New York: Academic Press, 1983, p , 101.[11] Frohlich, C., and C, Wehrli, World Radiation Center, Davos , Switzerland, 1981, magnetic tape received by personal communication.[12] Neckel, H., and D. Labs, "Improved Data of Solar Spectral Irradiance from 0.33 to 1.25 tJll1," Solar Phys., Vol. 74, 1981, pp. 231-249.[13] Angstrom, A., "Technique of Determining the Turbidity of the Atmosphere," Tellus, Vol. 13, 1961, pp. 214-231.[14] King, M. 0., and B. M. Herman, "Determination of the Ground Albedo and theIndex of Absorption of Atmospheric. Pa rticulates by Remote Sensing. Part I: Theory," J. of the Atmos. sei., Vol. 36, 1979, pp. 163-173.[15] Van Heuklon, T. K., "Estimating Atmospheric Ozone for Solar Radiation Models," Solar Energy, Vol. 22, 1979, pp. 63-68.[16] Bird, R. E., "Terrestrial Solar Spec. tra 1 Modeling, " Solar Cells, Vol. 7; 1983, p. 107. [17] Dave, J. V., International Business Machines Corporation, Palo Alto, CA,1979. Copies of the data sets were put on magnetic tape. "Extensive Datasets of Diffuse Radiation in Realistic Atmospheric Models with Aerosols and Common Absorbing Gases," Solar Energy, Vol. 21, 1978, p. 361.[18] Temps, R. C., and K. L. Coulson, "Solar Radiation Incident Upon Slopes of Different Orientations," Solar Energy, Vol. 19, 1977, pp. 179-184. [19] Klucher, T. M., "Evaluation of Models to Predict Insolation on Tilted Surfaces," Solar Energy, Vol. 23, 1979, pp , 111-1]4.[20] Bird, R. E., R. L. Hulstrom, A. W. Kliman, and H. G. Eldering, "Solar Spectral Measurements in the Terrestrial Environment," Applied Optics, Vol. 21, 1982, pp. 1430-1436.[21] Bird, R. E., and R. L. Hulstrom, "Precipitable Water Measurements with Sun Photometers" J. Applied Met., Vol. 21, 1982, pp. 1196-1201.

MUĞLA BÖLGESİ İÇİN AYLIK TOPLAM GÜNEŞ IŞINIM MİKTARININ HESAPLANMASI

Year 2018, Volume: 4 Issue: 2, 231 - 235, 19.12.2018
https://doi.org/10.22531/muglajsci.455566

Abstract

Güneş ışınımı, yeryüzüne
elektromanyetik dalgalar şeklinde gelir. Güneşten gelen enerji miktarının
hesaplanması, fotovoltaik sistemlerin (PV) verimliliğinin belirlenmesi
açısından çok önemlidir. Fotovoltaik sistemler (PV) güneş enerjisini elektrik
enerjisine dönüştürür. Bu dönüşümde, gelen güneş ışığı miktarı matematiksel
modellerle ile hesaplanabilir. Son yıllarda büyük bir ilgi gören ve 0.2-4.0 µm
dalga boyunda aralığında gelen spektral ışınım değeri hava kütlesi
parametresine bağlı olarak hesaplanır. Bu çalışmada SPCTRL 2 programı
kullanılarak matematiksel modelleme tartışılacaktır. Model, atmosferdeki güneş
ışığının miktarını belirlemede birçok değişkene sahiptir. Bu model ile herhangi
bir yüzeye düşen güneş enerjisi miktarı hesaplanır ve grafiksel olarak
modellenir. Çalışmamızda, Muğla ili için yatay ve eğimli yüzeylerinden gelen
doğrudan, dolaylı ve toplam (küresel) güneş enerjisi miktarları dalga boyuna
bağlı olarak hesaplanmıştır. Muğla ili için kış, ilkbahar, yaz ve sonbahar
mevsimlerinde yatay ve 30° eğimli yüzeyler ayrı ayrı hesaplanmaktadır. Burada,
yüzeydeki radyasyon miktarlarının eğim açısı ve mevsimsel değişimleri incelenmiştir.
Sonuç olarak, Muğla ili için güneş ışığı miktarı matematiksel modelleme ile
belirlenmiş ve uygun fotovoltaik sistemin kurulması için genel şartlar
belirlenmiştir.

References

  • REFERENCES[1] R. Eke, T.R. Betts, R., Gottschalg “Spectral irradiance effects on the outdoor performance of photovoltaic modules”[2] Gottschalg R, Betts TR, Infield DG, Kearney MJ. “The effect of spectral variations onthe performance parameters of single and double junction amorphous silicon solarcells.” Sol Energy, Mater Sol Cells, 2005;85:415–28.[3] Bird, R. E., "A Simple Spectral Model for Direct Normal and Diffuse Horizontal Irradiance," Solar Energy, Vol. 32, 1984, pp. 461-471.[4] International Electro-Technical Commission. Standard IEC 60904-3: Photovoltaic Devices. Part 3: Measurement Principles for Terrestrial Photovoltaic (PV) Solar Devices With Reference Spectral Irradiance Data (Ed. 2; 2008.)[5] R.Bird, C. Riordan, “Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth's Surface for Cloudless Atmospheres”, Solar Energy Research Institute A Division of Midwest Research Institute 1617 Cole Boulevard Golden, Colorado 80401[6] Leckner, B., "The Spectral Distribution of Solar Radiation at the Earth's Surface--Elements of a Model," Solar Energy, Vol. 20, 1978, pp. 143-150.[7] Brine, D. T., and M. Iqbal, "Solar Spectral Diffuse Irradiance Under Cloudless Skies," Solar Energy, Vol. 30, 1983, pp. 447-453.[8] Justus, C. G., and M. V. Paris, "A Model for Solar Spectral Irradiance at the Bottom and Top of a Cloudless Atmosphere," submitted to J. of Climate and Applied Meteorology, 1984.[9] Hay, J. E., and J. A. Davies, "Calculation of the Solar Radiation Incident on an Inclined Surface," in Proceedings, First Canadian Solar Radiation Data Workshop, J. E. Hay and T. K. Won, eds Toronto, Ontario, Canada, 1978.[10] Iqbal, M., “An Introduction to Solar Radiation”, New York: Academic Press, 1983, p , 101.[11] Frohlich, C., and C, Wehrli, World Radiation Center, Davos , Switzerland, 1981, magnetic tape received by personal communication.[12] Neckel, H., and D. Labs, "Improved Data of Solar Spectral Irradiance from 0.33 to 1.25 tJll1," Solar Phys., Vol. 74, 1981, pp. 231-249.[13] Angstrom, A., "Technique of Determining the Turbidity of the Atmosphere," Tellus, Vol. 13, 1961, pp. 214-231.[14] King, M. 0., and B. M. Herman, "Determination of the Ground Albedo and theIndex of Absorption of Atmospheric. Pa rticulates by Remote Sensing. Part I: Theory," J. of the Atmos. sei., Vol. 36, 1979, pp. 163-173.[15] Van Heuklon, T. K., "Estimating Atmospheric Ozone for Solar Radiation Models," Solar Energy, Vol. 22, 1979, pp. 63-68.[16] Bird, R. E., "Terrestrial Solar Spec. tra 1 Modeling, " Solar Cells, Vol. 7; 1983, p. 107. [17] Dave, J. V., International Business Machines Corporation, Palo Alto, CA,1979. Copies of the data sets were put on magnetic tape. "Extensive Datasets of Diffuse Radiation in Realistic Atmospheric Models with Aerosols and Common Absorbing Gases," Solar Energy, Vol. 21, 1978, p. 361.[18] Temps, R. C., and K. L. Coulson, "Solar Radiation Incident Upon Slopes of Different Orientations," Solar Energy, Vol. 19, 1977, pp. 179-184. [19] Klucher, T. M., "Evaluation of Models to Predict Insolation on Tilted Surfaces," Solar Energy, Vol. 23, 1979, pp , 111-1]4.[20] Bird, R. E., R. L. Hulstrom, A. W. Kliman, and H. G. Eldering, "Solar Spectral Measurements in the Terrestrial Environment," Applied Optics, Vol. 21, 1982, pp. 1430-1436.[21] Bird, R. E., and R. L. Hulstrom, "Precipitable Water Measurements with Sun Photometers" J. Applied Met., Vol. 21, 1982, pp. 1196-1201.
There are 1 citations in total.

Details

Primary Language English
Journal Section Journals
Authors

Rüştü Eke 0000-0002-4943-6644

Murat Kabakçı This is me 0000-0002-9234-0058

Publication Date December 19, 2018
Published in Issue Year 2018 Volume: 4 Issue: 2

Cite

APA Eke, R., & Kabakçı, M. (2018). SEASONAL VARIATION of the SPECTRAL IRRADIANCE for the PROVINCE of MUĞLA. Mugla Journal of Science and Technology, 4(2), 231-235. https://doi.org/10.22531/muglajsci.455566
AMA Eke R, Kabakçı M. SEASONAL VARIATION of the SPECTRAL IRRADIANCE for the PROVINCE of MUĞLA. Mugla Journal of Science and Technology. December 2018;4(2):231-235. doi:10.22531/muglajsci.455566
Chicago Eke, Rüştü, and Murat Kabakçı. “SEASONAL VARIATION of the SPECTRAL IRRADIANCE for the PROVINCE of MUĞLA”. Mugla Journal of Science and Technology 4, no. 2 (December 2018): 231-35. https://doi.org/10.22531/muglajsci.455566.
EndNote Eke R, Kabakçı M (December 1, 2018) SEASONAL VARIATION of the SPECTRAL IRRADIANCE for the PROVINCE of MUĞLA. Mugla Journal of Science and Technology 4 2 231–235.
IEEE R. Eke and M. Kabakçı, “SEASONAL VARIATION of the SPECTRAL IRRADIANCE for the PROVINCE of MUĞLA”, Mugla Journal of Science and Technology, vol. 4, no. 2, pp. 231–235, 2018, doi: 10.22531/muglajsci.455566.
ISNAD Eke, Rüştü - Kabakçı, Murat. “SEASONAL VARIATION of the SPECTRAL IRRADIANCE for the PROVINCE of MUĞLA”. Mugla Journal of Science and Technology 4/2 (December 2018), 231-235. https://doi.org/10.22531/muglajsci.455566.
JAMA Eke R, Kabakçı M. SEASONAL VARIATION of the SPECTRAL IRRADIANCE for the PROVINCE of MUĞLA. Mugla Journal of Science and Technology. 2018;4:231–235.
MLA Eke, Rüştü and Murat Kabakçı. “SEASONAL VARIATION of the SPECTRAL IRRADIANCE for the PROVINCE of MUĞLA”. Mugla Journal of Science and Technology, vol. 4, no. 2, 2018, pp. 231-5, doi:10.22531/muglajsci.455566.
Vancouver Eke R, Kabakçı M. SEASONAL VARIATION of the SPECTRAL IRRADIANCE for the PROVINCE of MUĞLA. Mugla Journal of Science and Technology. 2018;4(2):231-5.

5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license