Review
BibTex RIS Cite

IMPORTANCE OF SOME METALLOIDS IN BIOLOGICAL LIFE

Year 2018, Volume: 4 Issue: 2, 236 - 241, 19.12.2018
https://doi.org/10.22531/muglajsci.466007

Abstract

Metalloids have vital
importance for some organisms. The particular relationship between the
metalloid and specific biological functions should be investigated further,
though there are somewhat limited scientific studies on the subject. Among the
roles of this specific class of chemical elements, silicon, for instance, plays
an important role in the formation of valve structures in diatoms. Boron is an
essential element for plants and known to be toxic for living cells when
present above a certain threshold. Arsenic and antimony are toxic metalloid
elements in numerous respects. Therefore, the cells have developed biochemical
and molecular strategies to protect and escape from these metalloids. Another
metalloid, germanium, is one of the rare elements and although its inorganic
form is toxic, its organic form is used to treat many diseases. Studies have
shown that there is a high proportion of Germanium metalloid in the structure
of Ganoderma lucidum used in the treatment of some diseases. In addition,
tellurium-containing proteins were found in the structure of some
tellurium-resistant fungi. Thus, considering all this information collectively reflects
the significance of the metalloids in biological life. The aim of this study is
to present the importance and roles of some metalloids in biological life.

References

  • [1] Atkins P., Overton T., Rourke J., weller M., Armstrong F., “Shriver & Atkins' inorganic chemistry”, 5th ed., Oxford University Press, Oxford, ISBN 1429218207, 2010.
  • [2] Krannich L.K. & Watkins C.L. 2006, 'Arsenic: Organoarsenic chemistry,' Encyclopedia of inorganic chemistry, 2012.
  • [3] Warrington K. The effect of boric acid and borax on the broad bean and certain other plants. Annals of Botany. ;37:629–672, 1923.
  • [4] Rita A. Horner (2002). A taxonomic guide to some common marine phytoplankton. Biopress. pp. 25–30. ISBN 978-0-948737-65-7, 2013.
  • [5] Gallicchio L., Fowler B. A., Madden E. F., “Arsenic,Antimony and Bismuth”. Patty's Toxicology 2001.
  • [6] Greenwood NN & Earnshaw A, “Chemistry of the elements, 2nd ed., Butterworth-Heinemann”, ISBN 0750633654, 2002.
  • [7] Shorrocks, V.M. The occurrence and the correction of boron deficiency. Plant Soil 193, 121–148, 1997.
  • [8] Zangi R. and Filella M. “Transport routes of metalloids into and out of the cell: A review of the current knowledge.” Chemico-Biological Interactions, Spain, 11s, 2012.
  • [9] Savant N.K., Snyder G.H., Datnoff L.E. “Silicon management and sustainable rice production”, Adv. Agron 58 151–199, 1997.
  • [10] Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM. “Structural identification of a bacterial quorum-sensing signal containing boron.” Nature, USA, 545-9., 2002.
  • [11] O'Neill MA, Eberhard S, Albersheim P, Darvill AG. “Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth.” USA, 2001.
  • [12] Kohno J, Kawahata T, Otake T, Morimoto M, Mori H, Ueba N, Nishio M, Kinumaki A, Komatsubara S, Kawashima K. “Boromycin, an anti-HIV antibiotic.” Japan, 1996.
  • [13] Irschik H, Schummer D, Gerth K, Höfle G, Reichenbach H. “The tartrolons, new boron-containing antibiotics from a myxobacterium, Sorangium cellulosum”. Germanium, 1995.
  • [14] Okami,Y., Okazaki, H., Kitahara, T., Umezawa, H. “New antibiotic, aplasmomycin, produced by a Streptomycete isolated from shallow sea mud.” J. Antib. Studies on marine microorganisms.5.29, 1019-1025. 1976.
  • [15] Arai M., Koizumi Y., Sato H., Kawabe T., Suganuma M., Kobayashi H., Tomoda H., Omura S. “Boromycin abrogates bleomycininduced G2 checkpoint.” J. Antib. 57, 662–668. 2004.
  • [16] Negrete-Raymond Ac, Weder B, Wackett LP. “Catabolism of arylboronic acids by Arthrobacter nicotinovorans strain PBA.” Appl Environ Microbiol, USA. 2003.
  • [17] Benner, K., Klufers, P. “Polyol metal complexes part 36–a combined X-ray and NMR study of borate esters of furanoidic cis-1,2-diols.” Carbohydr. Res. 327, 287–292. 2000.
  • [18] Raven J.A. “Short and long-distance transport of boric acid in plants”, New Phytol. 84 231–249. 1980.
  • [19] Dordas C., Brown P.H. “Permeability of boric acid across lipid bilayers and factors affecting it”, J. Membr. Biol. 95–105. 2000.
  • [20] Dannel F., Pfeffer H., Romheld V. “Characterization of root boron pools, boron uptake and boron translocation in sunflower using the stabile isotopes 10B and 11B”, Austr. J. Plant Physiol. 27 397–405. 2000.
  • [21] Stangoulis J.C.R., Reid R.J., Brown P.H., Graham R.D. “Kinetic analysis of boron transport in Chara”, Planta 213; 142–146. 2001.
  • [22] Durbak AR, Phillips KA, Pike S, O'Neill MA, Mares J, Gallavotti A, Malcomber ST, Gassmann W, McSteen P. “Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize.” Plant Cell. Jul;26(7):2978-95. doi: 10.1105/tpc.114.125898, 2014.
  • [23] Dordas C., Brown P.H. Evidence for channel mediated transport of boric acid in squash (Cucurbita pepo), Plant Soil 235 95–103. 2001.
  • [24] Takano, J. et al. “The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation.” Plant Cell 18, 1498–1509, 2006.
  • [25] Kaya A., Karakaya H. C., Fomenko D. E., Gladyshev V. N., Koc A. “Identification of a Novel System for Boron Transport: Atr1 Is a Main Boron Exporter in Yeast”. Mol Cell Biol. Jul; 29(13): 3665–3674, 2009.
  • [26] Nielsen F.H. “Evidence for the nutritional essentiality of boron,” J. Trace Elem. Exp. Med. 9;215–229, 1996.
  • [27] Nielsen F.H., Penland J.G. “Boron supplementation of peri-menopausal women affects boron metabolism and indices associated with macromineral metabolism, hormonal status and immune function,” J. Trace Elem. Exp. Med. 12 251–261. 1999.
  • [28] Muller, W.E.G. “Silicon Biomineralization: Biology, Biochemistry, Molecular Biology, Biotechnology.” Springer-Verlag, Berlin. 2003.
  • [29] Bains, W., Tacke, R. “Silicon chemistry as a novel source of chemical diversity in drug design.” Curr. Opin. Drug Discov. Dev. 6, 526–543. 2003.
  • [30] Chuck R. "Similarities of Silicon & Carbon." Sciencing,https://sciencing.com/similarities-silicon-carbon-8508022.html, 2017.
  • [31] Exley, C. "Silicon in life:A bioinorganic solution to bioorganic essentiality". Journal of Inorganic Biochemistry. 69 (3): 139–144, 1998.
  • [32] Emanuel E. "SILICON". Annual Review of Plant Physiology and Plant Molecular Biology. 50: 641–664. 1999.
  • [33] Tomas R., Sigler K. “Biologically active compounds of semi-metals.” Phytochemistry 69, 585–606, 2007.
  • [34] Lukasiak J., Dorosz A., Falkiewicz B., Prokopowicz M., Rosciszewski P., “Biodegradation of Silicones (Organosiloxanes)” Chapter: Biodegradation of Silicones (Organosiloxanes). In: Biopolymers, 10.1002/3527600035.bpol9024, 2002.
  • [35] Labun P., Grulova D., Salamon I., Sersen F., “Calculating the Silicon in Horsetail (Equisetum arvense L.) during the Vegetation Season”, Food and Nutrition Sciences, 4, 510-514, 2013.
  • [36] Ueno N. M., Yamaji N., Ma J. F., “High Silicon Accumulation in the Shoot is Required for Down-Regulating the Expression of Si Transporter Genes in Rice”, Plant and Cell Physiology, Volume 57, Issue 12, 1 December, Pages 2510–2518, 2016.
  • [37] Gao, J.P., Chao, D.Y., Lin, H.X. “Understanding abiotic stres tolerance mechanisms: recent studies on stress response in rice.” J. Int. Plant Biol. 49, 742–750, 2007.
  • [38] Richmond, K.E., Sussman, M. “Got silicon? The non-essential beneficial plant nutrient. Curr. Opin”. Plant Biol. 6, 268–272. 2003.
  • [39] Jezequel V. M., Hildebrand M., Brzezinski M.A. “Silicon metabolism in diatoms:implications for growth. “J.Phycol. 36, 821-840. 2000.
  • [40] Racki, G.; Cordey, F. “Radiolarian palaeoecology and radiolarites: is the present the key to the past?”. Earth-Science Reviews 52: 83–120. 2000.
  • [41] Marron, A. O., Ratcliffe, S., Wheeler, G. L., Goldstein, R. E., King, N., Not, F., Richter, D. J. “The Evolution of Silicon Transport in Eukaryotes. Molecular Biology and Evolution, 33 (12), 3226–3248, 2016.
  • [42] Ma J.F., Tamai K., Yamaji N., Mitani N., Konishi S., Katsuhara M., Ishiguro M., Murata Y., Yano M. “A silicon transporter in rice,” Nature 440 688–691. 2006.
  • [43] Chiba Y., Mitani N., Yamaji N., Ma J.F. HvLsi1 is a silicon influx transporter in barley, Plant J. 57 810–818, 2009.
  • [44] Bienert G.P., Thorsen M., Schussler M.D., Nilsson H.R., Wagner A., Tamas M.J., Jahn T.P. “A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes, “BMC Biol. 6 26. 2008.
  • [45] Hildebrand M., Volcani B.E., Gassmann W., Schroeder J.I. “A gene family of silicon transporters,” Nature 385 688–689. 1997.
  • [46] 30. Lassus A. “Colloidal silicic acid for oral and topical treatment of aged skin, fragile hair and brittle nails in females,” J. Int. Med. Res. 21 209–215. 1993.
  • [47] Barel A., Calomme M., Timchenko A., Paepe K.D., Demeester N., Rogiers V., Clarys P. D. Berghe V., “Effect of oral intake of choline-stabilized orthosilicic acid on skin, nails and hair in women with photodamaged skin,” Arch. Dermatol. Res. 297 147–153. 2005.
  • [48] Van Veen B., Bolhuis G. K., Wu Y. S., Zuurman K., Frijlink H. W. “Compaction mechanism and tablet strength of unlubricated and lubricated (silicified) microcrystalline cellulose.” European Journal of Pharmaceutics and Biopharmaceutics, 59, 133–138 (2005).
  • [49] Shankar, S., Shanker, U., & Shikha. “Arsenic Contamination of Groundwater: A Review of Sources, Prevalence, Health Risks, and Strategies for Mitigation.” The Scientific World Journal, 2014, 304524, 2014.
  • [50] Hoffman R.D., Lane M.D. “Iodophenylarsine oxide and arsenical affinity chromatography: new probes for dithiol proteins,” J. Biol. Chem. 267 14005–14011. 1992.
  • [51] Menzel D.B., Hamadeh H.K., Lee E., Meacher D.M., Said V., Rasmussen R.E., Greene H., Roth R.N. “Arsenic binding proteins from human lymphoblastoid cells,” Toxicol. Lett. 105 89–101. 1999.
  • [52] Edmonds, J.S., Francesconi, K.A., Cannon, J.R., Raston, C.L., Skelton, B.W., White, A.H.,. “Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituent of the western rock lobster Panulirus longipes cygnus” George. Tetrahedron Lett. 18, 1543-1546. 1977.
  • [53] Bentley R, Chasteen T.G. “Microbial methylation of metalloids: arsenic, antimony, and bismuth.” Microbiol Mol Biol Rev. USA, 2002.
  • [54] Rosen B.P. “Biochemistry of arsenic detoxification.” FEBS Lett. Oct 2;529(1):86-92 USA, 2002.
  • [55] Zegers I., Martins J.C., Willem R., Wyns L., Messens J. “Arsenate reductase from S. aureus plasmid pI258 is a phosphatase drafted for redox duty.” Nat Struct Biol. Oct;8(10):843-7, 2001.
  • [56] Villa-Bellosta R., Sorribas V. “Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate.” Toxicol Appl Pharmacol., Oct 1;232(1):125-34, 2008.
  • [57] Maciaszczyk-Dziubinska, E., Wawrzycka, D., & Wysocki, R. “Arsenic and Antimony Transporters in Eukaryotes.” International Journal of Molecular Sciences, 13(3), 3527–3548. 2012.
  • [58] Mukhopadhyay, R., & Rosen, B. P. “Arsenate reductases in prokaryotes and eukaryotes”. Environmental Health Perspectives, 110 (Suppl 5), 745–748,2002.
  • [59] Paumi, C. M., Chuk, M., Snider, J., Stagljar, I., Michaelis, S. “ABC Transporters in Saccharomyces cerevisiae and Their Interactors: New Technology Advances the Biology of the ABCC (MRP) Subfamily. Microbiology and Molecular Biology Reviews : MMBR, 73(4), 577–593, 2009.
  • [60] Shen, S., Li, X.-F., Cullen, W. R., Weinfeld, M., Le, X. C. “Arsenic Binding to Proteins.” Chemical Reviews, 113(10), 7769–7792, 2013.
  • [61] Kulshrestha A, Jarouliya U, Prasad G, Flora S, Bisen PS. “Arsenic-induced abnormalities in glucose metabolism: Biochemical basis and potential therapeutic and nutritional interventions.” World J Transl Med; 3(2): 96-111, 2014.
  • [62] Bergquist, E. R., Fischer, R. J., Sugden, K. D., Martin, B. D. Inhibition by methylated organo-arsenicals of the respiratory 2-oxo-acid dehydrogenases. Journal of Organometallic Chemistry, 694(6), 973–980, 2009.
  • [63] Challenger F., “Biological methylation”, Chem. Rev. 36, 315–361, 1945.
  • [64] Gebel T. “Arsenic and antimony: comparative approach on mechanistic toxicology”, Chem.-Biol. Interact. 107 131–144, 1997.
  • [65] Frézard, F., Monte-Neto, R., & Reis, P. G. “Antimony transport mechanisms in resistant leishmania parasites.” Biophysical Reviews, 6(1), 119–132, 2014.
  • [66] Cook N. J., Ciobanu C. L., Spry P. G., Voudouris P. “Understanding gold-(silver)-telluride-(selenide) mineral deposits” Episodes Vol. 32, no. 4, 2009.
  • [67] Chasteen T. G., Bentley R. “Biomethylation of Selenium and Tellurium:  Microorganisms and Plants” Chem. Rev. 103, 1, 1-26, 2003.
  • [68] Ishiwata Y., Yokochi S., Hashimoto H., et al. “Protection against concanavalin A-induced murine liver injury by the organic germanium compound, propagermanium.” Scand.J Immunol.;48(6):605-614, 1998.
  • [69] Nakamura T., Nagura T., Sato K., Ohnıshı M. “Evaluation of the Effects of Dietary Organic Germanium, Ge-132, and Raffinose Supplementation on Caecal Flora in Rats.” Bioscience of Microbiota, Food and Health, 31(2), 37–45, 2012.
  • [70] Babu P. D. and Subhasree R. S., “The Sacred Mushroom “Reishi””. American-Eurasian Journal of Botany, 1 (3): 107-110, 2008.
  • [71] Jin X., Beguerie R. J., D.M. Sze , Chan G.C., “Ganoderma lucidum (Reishi mushroom) for cancer treatment.” Cochrane Database Syst Rev. Apr 5;4: 2016.
  • [72] Asai K., “Miracle Cure: Organic Germanium”, Japan Publications, Inc.; 1st edition 1980.
  • [73] Su, Z. Y., Sun Hwang, L., Chiang, B. H., Sheen, L. Y. “Antihepatoma and Liver Protective Potentials of Ganoderma Lucidum (Ling Zhi) Fermented in a Medium Containing Black Soybean (Hēi Dòu) and Astragalus Membranaceus (Shēng Huáng Qí).” Journal of Traditional and Complementary Medicine, 3(2), 110–118, 2013.

BİYOLOJİK YAŞAMDA BAZI METALLOİDLERİN ÖNEMİ

Year 2018, Volume: 4 Issue: 2, 236 - 241, 19.12.2018
https://doi.org/10.22531/muglajsci.466007

Abstract

Metalloidlerin bazı
organizmalar için hayati öneme sahip olduğu bilinmektedir. Metalloidlerin
biyolojik fonksiyonlar ile arasındaki ilişkilerin bilinmesi önem arz etmekte
olup, nispeten az olmakla birlikte bu konuda bilimsel çalışmalar vardır ve
çalışmaların artması gerekmektedir. Örneğin; Silikon, diyatomlardaki valf
yapılarının oluşumunda önemli bir rol oynar. Bor, bitkiler için vazgeçilmez bir
elementtir. Öte yandan, belirli bir eşiğin üzerinde mevcut olduğunda canlı
hücreler için toksik olduğu bilinmektedir. Bir diğer örnek, arsenik ve antimon
birçok yönden toksik metalloid elementlerdir. Bu nedenle, hücreler
metaloitlerden korunmak ve kaçmak için biyokimyasal ve moleküler stratejiler
geliştirmektedirler. Bir diğer metalloid olan germanyum nadir bulunan
elementlerden olup, inorganik formu toksik olmasına karşılık organik formu birçok
hastalığın tedavisinde kullanılmaktadır. Yapılan çalışmalar, bazı hastalıkların
tedavisinde kullanılan Ganoderma lucidum’un yapısında yüksek oranda Germanyum
metalloidinin olduğunu göstermiştir. Ayrıca bazı telluryuma dirençli
mantarların yapısında telluryum içeren proteinlere rastlanmıştır. Bu bilgiler
göz önünde bulundurulduğunda, metaloidlerin biyolojik yaşamda önemli yerleri
olduğu dikkat çekmektedir. Bu çalışmadaki amacımız, bazı metalloidlerin
biyolojik yaşamdaki önem ve rollerini derleyerek sunmaktır.

References

  • [1] Atkins P., Overton T., Rourke J., weller M., Armstrong F., “Shriver & Atkins' inorganic chemistry”, 5th ed., Oxford University Press, Oxford, ISBN 1429218207, 2010.
  • [2] Krannich L.K. & Watkins C.L. 2006, 'Arsenic: Organoarsenic chemistry,' Encyclopedia of inorganic chemistry, 2012.
  • [3] Warrington K. The effect of boric acid and borax on the broad bean and certain other plants. Annals of Botany. ;37:629–672, 1923.
  • [4] Rita A. Horner (2002). A taxonomic guide to some common marine phytoplankton. Biopress. pp. 25–30. ISBN 978-0-948737-65-7, 2013.
  • [5] Gallicchio L., Fowler B. A., Madden E. F., “Arsenic,Antimony and Bismuth”. Patty's Toxicology 2001.
  • [6] Greenwood NN & Earnshaw A, “Chemistry of the elements, 2nd ed., Butterworth-Heinemann”, ISBN 0750633654, 2002.
  • [7] Shorrocks, V.M. The occurrence and the correction of boron deficiency. Plant Soil 193, 121–148, 1997.
  • [8] Zangi R. and Filella M. “Transport routes of metalloids into and out of the cell: A review of the current knowledge.” Chemico-Biological Interactions, Spain, 11s, 2012.
  • [9] Savant N.K., Snyder G.H., Datnoff L.E. “Silicon management and sustainable rice production”, Adv. Agron 58 151–199, 1997.
  • [10] Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM. “Structural identification of a bacterial quorum-sensing signal containing boron.” Nature, USA, 545-9., 2002.
  • [11] O'Neill MA, Eberhard S, Albersheim P, Darvill AG. “Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth.” USA, 2001.
  • [12] Kohno J, Kawahata T, Otake T, Morimoto M, Mori H, Ueba N, Nishio M, Kinumaki A, Komatsubara S, Kawashima K. “Boromycin, an anti-HIV antibiotic.” Japan, 1996.
  • [13] Irschik H, Schummer D, Gerth K, Höfle G, Reichenbach H. “The tartrolons, new boron-containing antibiotics from a myxobacterium, Sorangium cellulosum”. Germanium, 1995.
  • [14] Okami,Y., Okazaki, H., Kitahara, T., Umezawa, H. “New antibiotic, aplasmomycin, produced by a Streptomycete isolated from shallow sea mud.” J. Antib. Studies on marine microorganisms.5.29, 1019-1025. 1976.
  • [15] Arai M., Koizumi Y., Sato H., Kawabe T., Suganuma M., Kobayashi H., Tomoda H., Omura S. “Boromycin abrogates bleomycininduced G2 checkpoint.” J. Antib. 57, 662–668. 2004.
  • [16] Negrete-Raymond Ac, Weder B, Wackett LP. “Catabolism of arylboronic acids by Arthrobacter nicotinovorans strain PBA.” Appl Environ Microbiol, USA. 2003.
  • [17] Benner, K., Klufers, P. “Polyol metal complexes part 36–a combined X-ray and NMR study of borate esters of furanoidic cis-1,2-diols.” Carbohydr. Res. 327, 287–292. 2000.
  • [18] Raven J.A. “Short and long-distance transport of boric acid in plants”, New Phytol. 84 231–249. 1980.
  • [19] Dordas C., Brown P.H. “Permeability of boric acid across lipid bilayers and factors affecting it”, J. Membr. Biol. 95–105. 2000.
  • [20] Dannel F., Pfeffer H., Romheld V. “Characterization of root boron pools, boron uptake and boron translocation in sunflower using the stabile isotopes 10B and 11B”, Austr. J. Plant Physiol. 27 397–405. 2000.
  • [21] Stangoulis J.C.R., Reid R.J., Brown P.H., Graham R.D. “Kinetic analysis of boron transport in Chara”, Planta 213; 142–146. 2001.
  • [22] Durbak AR, Phillips KA, Pike S, O'Neill MA, Mares J, Gallavotti A, Malcomber ST, Gassmann W, McSteen P. “Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize.” Plant Cell. Jul;26(7):2978-95. doi: 10.1105/tpc.114.125898, 2014.
  • [23] Dordas C., Brown P.H. Evidence for channel mediated transport of boric acid in squash (Cucurbita pepo), Plant Soil 235 95–103. 2001.
  • [24] Takano, J. et al. “The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation.” Plant Cell 18, 1498–1509, 2006.
  • [25] Kaya A., Karakaya H. C., Fomenko D. E., Gladyshev V. N., Koc A. “Identification of a Novel System for Boron Transport: Atr1 Is a Main Boron Exporter in Yeast”. Mol Cell Biol. Jul; 29(13): 3665–3674, 2009.
  • [26] Nielsen F.H. “Evidence for the nutritional essentiality of boron,” J. Trace Elem. Exp. Med. 9;215–229, 1996.
  • [27] Nielsen F.H., Penland J.G. “Boron supplementation of peri-menopausal women affects boron metabolism and indices associated with macromineral metabolism, hormonal status and immune function,” J. Trace Elem. Exp. Med. 12 251–261. 1999.
  • [28] Muller, W.E.G. “Silicon Biomineralization: Biology, Biochemistry, Molecular Biology, Biotechnology.” Springer-Verlag, Berlin. 2003.
  • [29] Bains, W., Tacke, R. “Silicon chemistry as a novel source of chemical diversity in drug design.” Curr. Opin. Drug Discov. Dev. 6, 526–543. 2003.
  • [30] Chuck R. "Similarities of Silicon & Carbon." Sciencing,https://sciencing.com/similarities-silicon-carbon-8508022.html, 2017.
  • [31] Exley, C. "Silicon in life:A bioinorganic solution to bioorganic essentiality". Journal of Inorganic Biochemistry. 69 (3): 139–144, 1998.
  • [32] Emanuel E. "SILICON". Annual Review of Plant Physiology and Plant Molecular Biology. 50: 641–664. 1999.
  • [33] Tomas R., Sigler K. “Biologically active compounds of semi-metals.” Phytochemistry 69, 585–606, 2007.
  • [34] Lukasiak J., Dorosz A., Falkiewicz B., Prokopowicz M., Rosciszewski P., “Biodegradation of Silicones (Organosiloxanes)” Chapter: Biodegradation of Silicones (Organosiloxanes). In: Biopolymers, 10.1002/3527600035.bpol9024, 2002.
  • [35] Labun P., Grulova D., Salamon I., Sersen F., “Calculating the Silicon in Horsetail (Equisetum arvense L.) during the Vegetation Season”, Food and Nutrition Sciences, 4, 510-514, 2013.
  • [36] Ueno N. M., Yamaji N., Ma J. F., “High Silicon Accumulation in the Shoot is Required for Down-Regulating the Expression of Si Transporter Genes in Rice”, Plant and Cell Physiology, Volume 57, Issue 12, 1 December, Pages 2510–2518, 2016.
  • [37] Gao, J.P., Chao, D.Y., Lin, H.X. “Understanding abiotic stres tolerance mechanisms: recent studies on stress response in rice.” J. Int. Plant Biol. 49, 742–750, 2007.
  • [38] Richmond, K.E., Sussman, M. “Got silicon? The non-essential beneficial plant nutrient. Curr. Opin”. Plant Biol. 6, 268–272. 2003.
  • [39] Jezequel V. M., Hildebrand M., Brzezinski M.A. “Silicon metabolism in diatoms:implications for growth. “J.Phycol. 36, 821-840. 2000.
  • [40] Racki, G.; Cordey, F. “Radiolarian palaeoecology and radiolarites: is the present the key to the past?”. Earth-Science Reviews 52: 83–120. 2000.
  • [41] Marron, A. O., Ratcliffe, S., Wheeler, G. L., Goldstein, R. E., King, N., Not, F., Richter, D. J. “The Evolution of Silicon Transport in Eukaryotes. Molecular Biology and Evolution, 33 (12), 3226–3248, 2016.
  • [42] Ma J.F., Tamai K., Yamaji N., Mitani N., Konishi S., Katsuhara M., Ishiguro M., Murata Y., Yano M. “A silicon transporter in rice,” Nature 440 688–691. 2006.
  • [43] Chiba Y., Mitani N., Yamaji N., Ma J.F. HvLsi1 is a silicon influx transporter in barley, Plant J. 57 810–818, 2009.
  • [44] Bienert G.P., Thorsen M., Schussler M.D., Nilsson H.R., Wagner A., Tamas M.J., Jahn T.P. “A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes, “BMC Biol. 6 26. 2008.
  • [45] Hildebrand M., Volcani B.E., Gassmann W., Schroeder J.I. “A gene family of silicon transporters,” Nature 385 688–689. 1997.
  • [46] 30. Lassus A. “Colloidal silicic acid for oral and topical treatment of aged skin, fragile hair and brittle nails in females,” J. Int. Med. Res. 21 209–215. 1993.
  • [47] Barel A., Calomme M., Timchenko A., Paepe K.D., Demeester N., Rogiers V., Clarys P. D. Berghe V., “Effect of oral intake of choline-stabilized orthosilicic acid on skin, nails and hair in women with photodamaged skin,” Arch. Dermatol. Res. 297 147–153. 2005.
  • [48] Van Veen B., Bolhuis G. K., Wu Y. S., Zuurman K., Frijlink H. W. “Compaction mechanism and tablet strength of unlubricated and lubricated (silicified) microcrystalline cellulose.” European Journal of Pharmaceutics and Biopharmaceutics, 59, 133–138 (2005).
  • [49] Shankar, S., Shanker, U., & Shikha. “Arsenic Contamination of Groundwater: A Review of Sources, Prevalence, Health Risks, and Strategies for Mitigation.” The Scientific World Journal, 2014, 304524, 2014.
  • [50] Hoffman R.D., Lane M.D. “Iodophenylarsine oxide and arsenical affinity chromatography: new probes for dithiol proteins,” J. Biol. Chem. 267 14005–14011. 1992.
  • [51] Menzel D.B., Hamadeh H.K., Lee E., Meacher D.M., Said V., Rasmussen R.E., Greene H., Roth R.N. “Arsenic binding proteins from human lymphoblastoid cells,” Toxicol. Lett. 105 89–101. 1999.
  • [52] Edmonds, J.S., Francesconi, K.A., Cannon, J.R., Raston, C.L., Skelton, B.W., White, A.H.,. “Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituent of the western rock lobster Panulirus longipes cygnus” George. Tetrahedron Lett. 18, 1543-1546. 1977.
  • [53] Bentley R, Chasteen T.G. “Microbial methylation of metalloids: arsenic, antimony, and bismuth.” Microbiol Mol Biol Rev. USA, 2002.
  • [54] Rosen B.P. “Biochemistry of arsenic detoxification.” FEBS Lett. Oct 2;529(1):86-92 USA, 2002.
  • [55] Zegers I., Martins J.C., Willem R., Wyns L., Messens J. “Arsenate reductase from S. aureus plasmid pI258 is a phosphatase drafted for redox duty.” Nat Struct Biol. Oct;8(10):843-7, 2001.
  • [56] Villa-Bellosta R., Sorribas V. “Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate.” Toxicol Appl Pharmacol., Oct 1;232(1):125-34, 2008.
  • [57] Maciaszczyk-Dziubinska, E., Wawrzycka, D., & Wysocki, R. “Arsenic and Antimony Transporters in Eukaryotes.” International Journal of Molecular Sciences, 13(3), 3527–3548. 2012.
  • [58] Mukhopadhyay, R., & Rosen, B. P. “Arsenate reductases in prokaryotes and eukaryotes”. Environmental Health Perspectives, 110 (Suppl 5), 745–748,2002.
  • [59] Paumi, C. M., Chuk, M., Snider, J., Stagljar, I., Michaelis, S. “ABC Transporters in Saccharomyces cerevisiae and Their Interactors: New Technology Advances the Biology of the ABCC (MRP) Subfamily. Microbiology and Molecular Biology Reviews : MMBR, 73(4), 577–593, 2009.
  • [60] Shen, S., Li, X.-F., Cullen, W. R., Weinfeld, M., Le, X. C. “Arsenic Binding to Proteins.” Chemical Reviews, 113(10), 7769–7792, 2013.
  • [61] Kulshrestha A, Jarouliya U, Prasad G, Flora S, Bisen PS. “Arsenic-induced abnormalities in glucose metabolism: Biochemical basis and potential therapeutic and nutritional interventions.” World J Transl Med; 3(2): 96-111, 2014.
  • [62] Bergquist, E. R., Fischer, R. J., Sugden, K. D., Martin, B. D. Inhibition by methylated organo-arsenicals of the respiratory 2-oxo-acid dehydrogenases. Journal of Organometallic Chemistry, 694(6), 973–980, 2009.
  • [63] Challenger F., “Biological methylation”, Chem. Rev. 36, 315–361, 1945.
  • [64] Gebel T. “Arsenic and antimony: comparative approach on mechanistic toxicology”, Chem.-Biol. Interact. 107 131–144, 1997.
  • [65] Frézard, F., Monte-Neto, R., & Reis, P. G. “Antimony transport mechanisms in resistant leishmania parasites.” Biophysical Reviews, 6(1), 119–132, 2014.
  • [66] Cook N. J., Ciobanu C. L., Spry P. G., Voudouris P. “Understanding gold-(silver)-telluride-(selenide) mineral deposits” Episodes Vol. 32, no. 4, 2009.
  • [67] Chasteen T. G., Bentley R. “Biomethylation of Selenium and Tellurium:  Microorganisms and Plants” Chem. Rev. 103, 1, 1-26, 2003.
  • [68] Ishiwata Y., Yokochi S., Hashimoto H., et al. “Protection against concanavalin A-induced murine liver injury by the organic germanium compound, propagermanium.” Scand.J Immunol.;48(6):605-614, 1998.
  • [69] Nakamura T., Nagura T., Sato K., Ohnıshı M. “Evaluation of the Effects of Dietary Organic Germanium, Ge-132, and Raffinose Supplementation on Caecal Flora in Rats.” Bioscience of Microbiota, Food and Health, 31(2), 37–45, 2012.
  • [70] Babu P. D. and Subhasree R. S., “The Sacred Mushroom “Reishi””. American-Eurasian Journal of Botany, 1 (3): 107-110, 2008.
  • [71] Jin X., Beguerie R. J., D.M. Sze , Chan G.C., “Ganoderma lucidum (Reishi mushroom) for cancer treatment.” Cochrane Database Syst Rev. Apr 5;4: 2016.
  • [72] Asai K., “Miracle Cure: Organic Germanium”, Japan Publications, Inc.; 1st edition 1980.
  • [73] Su, Z. Y., Sun Hwang, L., Chiang, B. H., Sheen, L. Y. “Antihepatoma and Liver Protective Potentials of Ganoderma Lucidum (Ling Zhi) Fermented in a Medium Containing Black Soybean (Hēi Dòu) and Astragalus Membranaceus (Shēng Huáng Qí).” Journal of Traditional and Complementary Medicine, 3(2), 110–118, 2013.
There are 73 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Journals
Authors

Merve Sezer 0000-0003-0947-2912

Esra Dibek 0000-0002-8110-5466

Bekir Çöl 0000-0001-8997-4116

Publication Date December 19, 2018
Published in Issue Year 2018 Volume: 4 Issue: 2

Cite

APA Sezer, M., Dibek, E., & Çöl, B. (2018). IMPORTANCE OF SOME METALLOIDS IN BIOLOGICAL LIFE. Mugla Journal of Science and Technology, 4(2), 236-241. https://doi.org/10.22531/muglajsci.466007
AMA Sezer M, Dibek E, Çöl B. IMPORTANCE OF SOME METALLOIDS IN BIOLOGICAL LIFE. Mugla Journal of Science and Technology. December 2018;4(2):236-241. doi:10.22531/muglajsci.466007
Chicago Sezer, Merve, Esra Dibek, and Bekir Çöl. “IMPORTANCE OF SOME METALLOIDS IN BIOLOGICAL LIFE”. Mugla Journal of Science and Technology 4, no. 2 (December 2018): 236-41. https://doi.org/10.22531/muglajsci.466007.
EndNote Sezer M, Dibek E, Çöl B (December 1, 2018) IMPORTANCE OF SOME METALLOIDS IN BIOLOGICAL LIFE. Mugla Journal of Science and Technology 4 2 236–241.
IEEE M. Sezer, E. Dibek, and B. Çöl, “IMPORTANCE OF SOME METALLOIDS IN BIOLOGICAL LIFE”, Mugla Journal of Science and Technology, vol. 4, no. 2, pp. 236–241, 2018, doi: 10.22531/muglajsci.466007.
ISNAD Sezer, Merve et al. “IMPORTANCE OF SOME METALLOIDS IN BIOLOGICAL LIFE”. Mugla Journal of Science and Technology 4/2 (December 2018), 236-241. https://doi.org/10.22531/muglajsci.466007.
JAMA Sezer M, Dibek E, Çöl B. IMPORTANCE OF SOME METALLOIDS IN BIOLOGICAL LIFE. Mugla Journal of Science and Technology. 2018;4:236–241.
MLA Sezer, Merve et al. “IMPORTANCE OF SOME METALLOIDS IN BIOLOGICAL LIFE”. Mugla Journal of Science and Technology, vol. 4, no. 2, 2018, pp. 236-41, doi:10.22531/muglajsci.466007.
Vancouver Sezer M, Dibek E, Çöl B. IMPORTANCE OF SOME METALLOIDS IN BIOLOGICAL LIFE. Mugla Journal of Science and Technology. 2018;4(2):236-41.

5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license