Research Article
BibTex RIS Cite

PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS

Year 2019, Volume: 5 Issue: 2, 42 - 48, 11.12.2019
https://doi.org/10.22531/muglajsci.566251

Abstract

There is a growing
trend in replacing conventional polymer composites by renewable materials for
various industrial applications. Polymer composites, in which at least one
component is biobased or biodegradable, are called biocomposites. Plant fibers have recently been used
in biocomposite products due to their highly unique properties such
as electrical, mechanical, thermal and optical properties, as well as
biodegradability. Another reason for the emerging interest in these
biomaterials is the abundancy and low cost.  In addition, the growing
awareness of environmental issues around the world has led researchers and
manufacturers to make efforts in the field of bio-composite materials. In this
context, many studies have been carried out to design and implement
engineering and technological applications by utilizing plant fibers together
with various polymers. As a result of natural bio-source driven
high-performance materials, significant achievements have been reported in
material science. In this study, the use of various plant fibers to fabricate
biocomposite materials, the effects of the type of fibers on mechanical
properties and the structure of biocomposites in the production process
have been discussed along with future trends of plant fiber reinforced
composites. 

Supporting Institution

The scientific research coordinator of the Ege University

Project Number

FGA-2018-20029

References

  • 1. Saheb, DN. and Jog, JP., ’’Natural Fiber Polymer Composites: A Review’’, Advances in Polymer Technology, 18(4), 351–363, 1999.
  • 2. Jose da Silva, E., Marques, ML., Velasco, FM., Junior, C.F., Luzardo, FM., Tashima, MM., ‘‘A new treatment for coconut fibers to improve the properties of cementbased composites – Combined effect of natural latex/pozzolanic materials’’, Sustainable Materials and Technologies, 12, 44-51, 2017.
  • 3. George, J., Sreekala, MS., Thomas, S., ‘‘A Review on Interface Modification and Characterization of Natural Fiber Reinforced Plastic Composites’’, Polymer Engineering and Science, 41(9), 1471-1485, 2001.
  • 4. Abdul Khalil, HPS., Bhat, AH., Ireana Yusra, AF., ‘‘Green composites from sustainable cellulose nanofibrils: A review’’, Carbohydrate Polymers, 87(2), 963– 979, 2012.
  • 5. Ramesh, M., Palanikumar, K., Reddy, KHC., "Plant fibre based bio-composites: Sustainable and renewable green materials”, Renewable and Sustainable Energy Reviews, 79, 558-584, 2017.
  • 6. Kucukdogan, N., Halis, S., Sutcu, M., Sarikanat, M., Seki, Y., Sever, K., ‘‘Investigation of mechanical properties of paper processing residue filled high density polyetylene (HDPE) composites’’, Pamukkale University Engineering College Journal Of Engineering Sciences, 23(8), 949-953, 2017.
  • 7. Sanjay, MR., Yogesha, B., ‘‘Studies on Natural/Glass Fiber Reinforced Polymer Hybrid Composites: An Evolution’’, Materials Today: Proceedings, 4(2), 2739–2747, 2017.
  • 8. Li, X., Lope, G., Tabil, L.G., Panigrahi, S., ‘‘Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review’’, Journal of Polymer Environment, 15(1), 25–33, 2007.
  • 9. Eroğlu, H., İstek, A., Usta, M., ‘‘Medium Density Fiberboard (MDF) Manufacturing From Wheat Straw (Triticum aestivum L.) And Straw Wood Mixture’’, Pamukkale University Engineering College Journal Of Engineering Sciences, 7(2), 305-311, 2001.
  • 10. Gürüler, H., Ballı, S., Yeniocak, M., Göktaş, O., Estimation the Properties of Particleboards on composite panels using artificial neural networks, Mugla Journal of Science and Technology, 1, 24-33, 2015.
  • 11. Rahman, R., Hasan, M., Huque, M., Islam, N., ‘‘Physico-mechanical Properties of Maleic Acid Post Treated Jute Fiber Reinforced Polypropylene Composites’’, Journal of Thermoplastic Composite Materials, 22(4), 365-381, 2009.
  • 12. Guillou, J., Lavadiya, D.K., Munro, T., Fronk, T., Ban, H., ‘‘From lignocellulose to biocomposite: Multi-level modelling and experimental investigation of the thermal properties of kenaf fiber reinforced composites based on constituent materials’’, Applied Thermal Engineering, 128, 1372–1381, 2018.
  • 13. Srubar, WV., Pilla, S., Wright, ZC., Ryan, CA., Greene, JP., Frank, CW., Billigton, SL., ‘‘Mechanisms and impact of fibre-matrix compatibilization techniques on the material characterization of PHBV/oak wood flour engineered bio based composites’’, Composite Science Technology, 72(6), 708–715, 2012.
  • 14. Wambua, P., Ivens J, Verpoest, I., ’‘Natural fibres: can they replace glass in fibre reinforced plastics’’, Composite Science Technology, 63(9), 1259-1264, 2003.
  • 15. Jahn, A., Schroder, MW., Futing, M., Schenzel. K., Diepenbrock, W., ‘‘Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy’’, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58(10), 2271-2279, 2002.
  • 16. Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E., Vepoes, I., ''Influence of processing and chemical treatment of flax fibres on their composites’’, Composites Science Technology, 63, 1241-1272, 2003.
  • 17. Mishra, S., Mohanty, AK., Drzal, LT., Misra, M., Parija, S., Nayak, SK., Tipathy, SS., ‘‘Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites’’, Composite Science and Technology, 63, 1377-1385, 2003.
  • 18. Pothan, LA., Oommen, Z., Thomas, S., ‘‘Dynamic mechanical analysis of banana fibre reinforced polyester composites’’, Composite Science and Technology, 63, 283–93, 2003.
  • 19. Puglia, D., Biagiotti, J., Kenny, JM., ‘‘A review on natural fibre based composites–Part II: application of natural reinforcements in composite materials for automotive industry’’, Journal of Natural Fibers, 1(3), 23–65, 2004.

PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS

Year 2019, Volume: 5 Issue: 2, 42 - 48, 11.12.2019
https://doi.org/10.22531/muglajsci.566251

Abstract

Son yıllarda farklı endüstriyel uygulamalar için
geleneksel polimer kompozitlerin yerine yenilenebilir kaynakların kullanımına
olan ilgi artmaktadır. En az bir bileşen biyobazlı veya biyobozunur olan
polimer kompozitlere biyokompozit adı verilmektedir. Son zamanlarda bitki
liflerinin sahip oldukları mekanik, termal, optik ve biyobozunurluk gibi  benzersiz özellikleri sebebiyle biyokompozit
ürünlerdekullanılmaktadır. Bu malzemelere olan yüksek ilginin bir  diğer nedeni ise   ucuz ve
düşük ortam etkisine sahip olmalarıdır. Bitki liflerinin bol miktarda
bulunabilirliği ve erişilebilirliği ortaya çıkan yeni ilginin ana nedenleridir.
Doğal kaynaklardan oluşan yüksek performanslı malzemeler sayesinde, malzeme
bilimi alanındaki biyoteknolojide önemli kazanımlar dünya çapında artış
göstermektedir. Bunlara ilaveten, dünyadaki çevre sorunlarına karşı
artanfarkındalık, araştırmacıları ve üreticileri biyokompozit malzemeler
alanında çaba göstermeye yöneltmektedir. Bu kapsamda farklı polimerlerle bitki
liflerinin birlikte kullanıldığı mühendislik ve teknolojik uygulamalar için
gerçekleştirilmiş birçok tasarım ve uyarlama çalışması bulunmaktadır. Doğal
kaynağa dayalı yüksek performanslı malzemelerin bir sonucu olarak malzeme
biliminde önemli başarımlar elde edilmiştir. Bu çalışmada, çeşitli bitki
liflerinin biyokompozit malzeme üretmek için kullanımı, lif türlerinin mekanik
özellikler üzerindeki etkileri ve üretim sürecinde biyokompozitlerin yapısı ile
bitki lif takviyeli güçlendirilmiş kompozitlerin gelecek eğilimleri üzerine
tartışılmaktadır
.

Project Number

FGA-2018-20029

References

  • 1. Saheb, DN. and Jog, JP., ’’Natural Fiber Polymer Composites: A Review’’, Advances in Polymer Technology, 18(4), 351–363, 1999.
  • 2. Jose da Silva, E., Marques, ML., Velasco, FM., Junior, C.F., Luzardo, FM., Tashima, MM., ‘‘A new treatment for coconut fibers to improve the properties of cementbased composites – Combined effect of natural latex/pozzolanic materials’’, Sustainable Materials and Technologies, 12, 44-51, 2017.
  • 3. George, J., Sreekala, MS., Thomas, S., ‘‘A Review on Interface Modification and Characterization of Natural Fiber Reinforced Plastic Composites’’, Polymer Engineering and Science, 41(9), 1471-1485, 2001.
  • 4. Abdul Khalil, HPS., Bhat, AH., Ireana Yusra, AF., ‘‘Green composites from sustainable cellulose nanofibrils: A review’’, Carbohydrate Polymers, 87(2), 963– 979, 2012.
  • 5. Ramesh, M., Palanikumar, K., Reddy, KHC., "Plant fibre based bio-composites: Sustainable and renewable green materials”, Renewable and Sustainable Energy Reviews, 79, 558-584, 2017.
  • 6. Kucukdogan, N., Halis, S., Sutcu, M., Sarikanat, M., Seki, Y., Sever, K., ‘‘Investigation of mechanical properties of paper processing residue filled high density polyetylene (HDPE) composites’’, Pamukkale University Engineering College Journal Of Engineering Sciences, 23(8), 949-953, 2017.
  • 7. Sanjay, MR., Yogesha, B., ‘‘Studies on Natural/Glass Fiber Reinforced Polymer Hybrid Composites: An Evolution’’, Materials Today: Proceedings, 4(2), 2739–2747, 2017.
  • 8. Li, X., Lope, G., Tabil, L.G., Panigrahi, S., ‘‘Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review’’, Journal of Polymer Environment, 15(1), 25–33, 2007.
  • 9. Eroğlu, H., İstek, A., Usta, M., ‘‘Medium Density Fiberboard (MDF) Manufacturing From Wheat Straw (Triticum aestivum L.) And Straw Wood Mixture’’, Pamukkale University Engineering College Journal Of Engineering Sciences, 7(2), 305-311, 2001.
  • 10. Gürüler, H., Ballı, S., Yeniocak, M., Göktaş, O., Estimation the Properties of Particleboards on composite panels using artificial neural networks, Mugla Journal of Science and Technology, 1, 24-33, 2015.
  • 11. Rahman, R., Hasan, M., Huque, M., Islam, N., ‘‘Physico-mechanical Properties of Maleic Acid Post Treated Jute Fiber Reinforced Polypropylene Composites’’, Journal of Thermoplastic Composite Materials, 22(4), 365-381, 2009.
  • 12. Guillou, J., Lavadiya, D.K., Munro, T., Fronk, T., Ban, H., ‘‘From lignocellulose to biocomposite: Multi-level modelling and experimental investigation of the thermal properties of kenaf fiber reinforced composites based on constituent materials’’, Applied Thermal Engineering, 128, 1372–1381, 2018.
  • 13. Srubar, WV., Pilla, S., Wright, ZC., Ryan, CA., Greene, JP., Frank, CW., Billigton, SL., ‘‘Mechanisms and impact of fibre-matrix compatibilization techniques on the material characterization of PHBV/oak wood flour engineered bio based composites’’, Composite Science Technology, 72(6), 708–715, 2012.
  • 14. Wambua, P., Ivens J, Verpoest, I., ’‘Natural fibres: can they replace glass in fibre reinforced plastics’’, Composite Science Technology, 63(9), 1259-1264, 2003.
  • 15. Jahn, A., Schroder, MW., Futing, M., Schenzel. K., Diepenbrock, W., ‘‘Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy’’, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58(10), 2271-2279, 2002.
  • 16. Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E., Vepoes, I., ''Influence of processing and chemical treatment of flax fibres on their composites’’, Composites Science Technology, 63, 1241-1272, 2003.
  • 17. Mishra, S., Mohanty, AK., Drzal, LT., Misra, M., Parija, S., Nayak, SK., Tipathy, SS., ‘‘Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites’’, Composite Science and Technology, 63, 1377-1385, 2003.
  • 18. Pothan, LA., Oommen, Z., Thomas, S., ‘‘Dynamic mechanical analysis of banana fibre reinforced polyester composites’’, Composite Science and Technology, 63, 283–93, 2003.
  • 19. Puglia, D., Biagiotti, J., Kenny, JM., ‘‘A review on natural fibre based composites–Part II: application of natural reinforcements in composite materials for automotive industry’’, Journal of Natural Fibers, 1(3), 23–65, 2004.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Journals
Authors

Melih Soner Celiktas 0000-0003-0597-5133

Merve Uyan 0000-0002-0852-1658

Project Number FGA-2018-20029
Publication Date December 11, 2019
Published in Issue Year 2019 Volume: 5 Issue: 2

Cite

APA Celiktas, M. S., & Uyan, M. (2019). PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS. Mugla Journal of Science and Technology, 5(2), 42-48. https://doi.org/10.22531/muglajsci.566251
AMA Celiktas MS, Uyan M. PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS. MJST. December 2019;5(2):42-48. doi:10.22531/muglajsci.566251
Chicago Celiktas, Melih Soner, and Merve Uyan. “PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS”. Mugla Journal of Science and Technology 5, no. 2 (December 2019): 42-48. https://doi.org/10.22531/muglajsci.566251.
EndNote Celiktas MS, Uyan M (December 1, 2019) PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS. Mugla Journal of Science and Technology 5 2 42–48.
IEEE M. S. Celiktas and M. Uyan, “PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS”, MJST, vol. 5, no. 2, pp. 42–48, 2019, doi: 10.22531/muglajsci.566251.
ISNAD Celiktas, Melih Soner - Uyan, Merve. “PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS”. Mugla Journal of Science and Technology 5/2 (December 2019), 42-48. https://doi.org/10.22531/muglajsci.566251.
JAMA Celiktas MS, Uyan M. PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS. MJST. 2019;5:42–48.
MLA Celiktas, Melih Soner and Merve Uyan. “PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS”. Mugla Journal of Science and Technology, vol. 5, no. 2, 2019, pp. 42-48, doi:10.22531/muglajsci.566251.
Vancouver Celiktas MS, Uyan M. PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS. MJST. 2019;5(2):42-8.

5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license