Year 2019, Volume 5 , Issue 2, Pages 42 - 48 2019-12-11

PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS
PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS

Melih Soner Celiktas [1] , Merve Uyan [2]


There is a growing trend in replacing conventional polymer composites by renewable materials for various industrial applications. Polymer composites, in which at least one component is biobased or biodegradable, are called biocomposites. Plant fibers have recently been used in biocomposite products due to their highly unique properties such as electrical, mechanical, thermal and optical properties, as well as biodegradability. Another reason for the emerging interest in these biomaterials is the abundancy and low cost.  In addition, the growing awareness of environmental issues around the world has led researchers and manufacturers to make efforts in the field of bio-composite materials. In this context, many studies have been carried out to design and implement engineering and technological applications by utilizing plant fibers together with various polymers. As a result of natural bio-source driven high-performance materials, significant achievements have been reported in material science. In this study, the use of various plant fibers to fabricate biocomposite materials, the effects of the type of fibers on mechanical properties and the structure of biocomposites in the production process have been discussed along with future trends of plant fiber reinforced composites. 

Son yıllarda farklı endüstriyel uygulamalar için geleneksel polimer kompozitlerin yerine yenilenebilir kaynakların kullanımına olan ilgi artmaktadır. En az bir bileşen biyobazlı veya biyobozunur olan polimer kompozitlere biyokompozit adı verilmektedir. Son zamanlarda bitki liflerinin sahip oldukları mekanik, termal, optik ve biyobozunurluk gibi  benzersiz özellikleri sebebiyle biyokompozit ürünlerdekullanılmaktadır. Bu malzemelere olan yüksek ilginin bir  diğer nedeni ise   ucuz ve düşük ortam etkisine sahip olmalarıdır. Bitki liflerinin bol miktarda bulunabilirliği ve erişilebilirliği ortaya çıkan yeni ilginin ana nedenleridir. Doğal kaynaklardan oluşan yüksek performanslı malzemeler sayesinde, malzeme bilimi alanındaki biyoteknolojide önemli kazanımlar dünya çapında artış göstermektedir. Bunlara ilaveten, dünyadaki çevre sorunlarına karşı artanfarkındalık, araştırmacıları ve üreticileri biyokompozit malzemeler alanında çaba göstermeye yöneltmektedir. Bu kapsamda farklı polimerlerle bitki liflerinin birlikte kullanıldığı mühendislik ve teknolojik uygulamalar için gerçekleştirilmiş birçok tasarım ve uyarlama çalışması bulunmaktadır. Doğal kaynağa dayalı yüksek performanslı malzemelerin bir sonucu olarak malzeme biliminde önemli başarımlar elde edilmiştir. Bu çalışmada, çeşitli bitki liflerinin biyokompozit malzeme üretmek için kullanımı, lif türlerinin mekanik özellikler üzerindeki etkileri ve üretim sürecinde biyokompozitlerin yapısı ile bitki lif takviyeli güçlendirilmiş kompozitlerin gelecek eğilimleri üzerine tartışılmaktadır.

  • 1. Saheb, DN. and Jog, JP., ’’Natural Fiber Polymer Composites: A Review’’, Advances in Polymer Technology, 18(4), 351–363, 1999.
  • 2. Jose da Silva, E., Marques, ML., Velasco, FM., Junior, C.F., Luzardo, FM., Tashima, MM., ‘‘A new treatment for coconut fibers to improve the properties of cementbased composites – Combined effect of natural latex/pozzolanic materials’’, Sustainable Materials and Technologies, 12, 44-51, 2017.
  • 3. George, J., Sreekala, MS., Thomas, S., ‘‘A Review on Interface Modification and Characterization of Natural Fiber Reinforced Plastic Composites’’, Polymer Engineering and Science, 41(9), 1471-1485, 2001.
  • 4. Abdul Khalil, HPS., Bhat, AH., Ireana Yusra, AF., ‘‘Green composites from sustainable cellulose nanofibrils: A review’’, Carbohydrate Polymers, 87(2), 963– 979, 2012.
  • 5. Ramesh, M., Palanikumar, K., Reddy, KHC., "Plant fibre based bio-composites: Sustainable and renewable green materials”, Renewable and Sustainable Energy Reviews, 79, 558-584, 2017.
  • 6. Kucukdogan, N., Halis, S., Sutcu, M., Sarikanat, M., Seki, Y., Sever, K., ‘‘Investigation of mechanical properties of paper processing residue filled high density polyetylene (HDPE) composites’’, Pamukkale University Engineering College Journal Of Engineering Sciences, 23(8), 949-953, 2017.
  • 7. Sanjay, MR., Yogesha, B., ‘‘Studies on Natural/Glass Fiber Reinforced Polymer Hybrid Composites: An Evolution’’, Materials Today: Proceedings, 4(2), 2739–2747, 2017.
  • 8. Li, X., Lope, G., Tabil, L.G., Panigrahi, S., ‘‘Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review’’, Journal of Polymer Environment, 15(1), 25–33, 2007.
  • 9. Eroğlu, H., İstek, A., Usta, M., ‘‘Medium Density Fiberboard (MDF) Manufacturing From Wheat Straw (Triticum aestivum L.) And Straw Wood Mixture’’, Pamukkale University Engineering College Journal Of Engineering Sciences, 7(2), 305-311, 2001.
  • 10. Gürüler, H., Ballı, S., Yeniocak, M., Göktaş, O., Estimation the Properties of Particleboards on composite panels using artificial neural networks, Mugla Journal of Science and Technology, 1, 24-33, 2015.
  • 11. Rahman, R., Hasan, M., Huque, M., Islam, N., ‘‘Physico-mechanical Properties of Maleic Acid Post Treated Jute Fiber Reinforced Polypropylene Composites’’, Journal of Thermoplastic Composite Materials, 22(4), 365-381, 2009.
  • 12. Guillou, J., Lavadiya, D.K., Munro, T., Fronk, T., Ban, H., ‘‘From lignocellulose to biocomposite: Multi-level modelling and experimental investigation of the thermal properties of kenaf fiber reinforced composites based on constituent materials’’, Applied Thermal Engineering, 128, 1372–1381, 2018.
  • 13. Srubar, WV., Pilla, S., Wright, ZC., Ryan, CA., Greene, JP., Frank, CW., Billigton, SL., ‘‘Mechanisms and impact of fibre-matrix compatibilization techniques on the material characterization of PHBV/oak wood flour engineered bio based composites’’, Composite Science Technology, 72(6), 708–715, 2012.
  • 14. Wambua, P., Ivens J, Verpoest, I., ’‘Natural fibres: can they replace glass in fibre reinforced plastics’’, Composite Science Technology, 63(9), 1259-1264, 2003.
  • 15. Jahn, A., Schroder, MW., Futing, M., Schenzel. K., Diepenbrock, W., ‘‘Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy’’, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58(10), 2271-2279, 2002.
  • 16. Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E., Vepoes, I., ''Influence of processing and chemical treatment of flax fibres on their composites’’, Composites Science Technology, 63, 1241-1272, 2003.
  • 17. Mishra, S., Mohanty, AK., Drzal, LT., Misra, M., Parija, S., Nayak, SK., Tipathy, SS., ‘‘Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites’’, Composite Science and Technology, 63, 1377-1385, 2003.
  • 18. Pothan, LA., Oommen, Z., Thomas, S., ‘‘Dynamic mechanical analysis of banana fibre reinforced polyester composites’’, Composite Science and Technology, 63, 283–93, 2003.
  • 19. Puglia, D., Biagiotti, J., Kenny, JM., ‘‘A review on natural fibre based composites–Part II: application of natural reinforcements in composite materials for automotive industry’’, Journal of Natural Fibers, 1(3), 23–65, 2004.
Primary Language tr
Subjects Engineering
Journal Section Journals
Authors

Orcid: 0000-0003-0597-5133
Author: Melih Soner Celiktas (Primary Author)
Institution: EGE UNIVERSITY, INSTITUTE OF SOLAR ENERGY
Country: Turkey


Orcid: 0000-0002-0852-1658
Author: Merve Uyan
Institution: EGE UNIVERSITY, INSTITUTE OF SOLAR ENERGY
Country: Turkey


Supporting Institution The scientific research coordinator of the Ege University
Project Number FGA-2018-20029
Dates

Publication Date : December 11, 2019

Bibtex @research article { muglajsci566251, journal = {Mugla Journal of Science and Technology}, issn = {2149-3596}, address = {}, publisher = {Muğla Sıtkı Koçman Üniversitesi}, year = {2019}, volume = {5}, pages = {42 - 48}, doi = {10.22531/muglajsci.566251}, title = {PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS}, key = {cite}, author = {Celiktas, Melih Soner and Uyan, Merve} }
APA Celiktas, M , Uyan, M . (2019). PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS. Mugla Journal of Science and Technology , 5 (2) , 42-48 . DOI: 10.22531/muglajsci.566251
MLA Celiktas, M , Uyan, M . "PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS". Mugla Journal of Science and Technology 5 (2019 ): 42-48 <https://dergipark.org.tr/en/pub/muglajsci/issue/49054/566251>
Chicago Celiktas, M , Uyan, M . "PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS". Mugla Journal of Science and Technology 5 (2019 ): 42-48
RIS TY - JOUR T1 - PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS AU - Melih Soner Celiktas , Merve Uyan Y1 - 2019 PY - 2019 N1 - doi: 10.22531/muglajsci.566251 DO - 10.22531/muglajsci.566251 T2 - Mugla Journal of Science and Technology JF - Journal JO - JOR SP - 42 EP - 48 VL - 5 IS - 2 SN - 2149-3596- M3 - doi: 10.22531/muglajsci.566251 UR - https://doi.org/10.22531/muglajsci.566251 Y2 - 2019 ER -
EndNote %0 Mugla Journal of Science and Technology PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS %A Melih Soner Celiktas , Merve Uyan %T PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS %D 2019 %J Mugla Journal of Science and Technology %P 2149-3596- %V 5 %N 2 %R doi: 10.22531/muglajsci.566251 %U 10.22531/muglajsci.566251
ISNAD Celiktas, Melih Soner , Uyan, Merve . "PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS". Mugla Journal of Science and Technology 5 / 2 (December 2019): 42-48 . https://doi.org/10.22531/muglajsci.566251
AMA Celiktas M , Uyan M . PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS. Mugla Journal of Science and Technology. 2019; 5(2): 42-48.
Vancouver Celiktas M , Uyan M . PLANT FIBER REINFORCED BIOCOMPOSITE: PROPERTIES AND APPLICATIONS. Mugla Journal of Science and Technology. 2019; 5(2): 48-42.