Research Article
BibTex RIS Cite

CHEMICAL SYNTHESIS OF Al AND Co DOPED LiNi6Mn2Fe2O2 (NMF) CATHODE MATERIAL

Year 2019, Volume: 5 Issue: 2, 62 - 67, 11.12.2019
https://doi.org/10.22531/muglajsci.596341

Abstract

Al ve Co
katkılı LiNixMnyFezO2 (NMF) sol-gel
yöntemi kullanılarak sentezlenmiştir. Katkıların LiNixMnyFezO2
(NMF) katot malzemelerinin yapısal stabilitesi üzerindeki etkisi araştırılmıştır.
Bu amaçla, tozlar, nitrat öncüllerinin sulu bir çözeltisi kullanılarak
hazırlanmış ve 850 ° C'de 5 saatte kalsine edilmiştir. LiNixMnyFezO2
sisteminin kimyasal bileşimi 622 (Ni / Mn / Fe atomik oran) olarak seçilmiş
başarıyla sentezlenmiştir. Elde edilen tozların kimyasal bileşimi enerji
saçılım spektroskopisi ile kontrol edilmiştir. Tozların morfolojisi taramalı
elektron mikroskobu kullanılarak incelenmiştir. Numunelerin kristal yapısı, X
ışını kırınımı ve Rietveld analizi kullanılarak analiz edilmiş ve ortalama
kristal büyüklüğü 60-70 nm arasında hesaplanmıştır. Co katkılı ve Al katkılı
622 katot malzemelerin tabakalı yapıya sahip olduğu [006] / [102] ve [108] /
[110] difraksiyon çiftleri ile görülmüştür.

References

  • [1] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature. 414 (2001) 359–367. doi:10.1038/35104644.
  • [2] J.B. Goodenough, K.-S. Park, The Li-Ion Rechargeable Battery: A Perspective, J. Am. Chem. Soc. (2013). doi:10.1021/ja3091438.
  • [3] J.B. Goodenough, Cathode materials: A personal perspective, J. Power Sources. 174 (2007) 996–1000. doi:10.1016/j.jpowsour.2007.06.217.
  • [4] C. Delmas, M. Ménétrier, L. Croguennec, I. Saadoune, A. Rougier, C. Pouillerie, G. Prado, M. Grüne, L. Fournès, An overview of the Li(Ni,M)O2 systems: syntheses, structures and properties, Electrochim. Acta. 45 (1999) 243–253. doi:10.1016/S0013-4686(99)00208-X.
  • [5] M. Broussely, P. Biensan, B. Simon, Lithium insertion into host materials: the key to success for Li ion batteries, Electrochim. Acta. 45 (1999) 3–22. doi:10.1016/S0013-4686(99)00189-9.
  • [6] B.B. Ammundsen, J. Paulsen, Ammundsen2001.pdf, (2001) 943–956.
  • [7] R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting, K. Albe, C. Hess, W. Jaegermann, Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches, Mater. Sci. Eng. B. 192 (2015) 3–25. doi:10.1016/j.mseb.2014.11.014.[8] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, ChemInform Abstract: Insertion Electrode Materials for Rechargeable Lithium Batteries, ChemInform. 29 (2010) no-no. doi:10.1002/chin.199837286.
  • [9] M.G.S.R. Thomas, W.I.F. David, J.B. Goodenough, P. Groves, Synthesis and structural characterization of the normal spinel Li[Ni2]O4, Mater. Res. Bull. 20 (1985) 1137–1146. doi:10.1016/0025-5408(85)90087-X.
  • [10] T.H. Kim, J.S. Park, S.K. Chang, S. Choi, J.H. Ryu, H.K. Song, The current move of lithium ion batteries towards the next phase, Adv. Energy Mater. 2 (2012) 860–872. doi:10.1002/aenm.201200028.
  • [11] B. Pişkin, C. Savaş Uygur, M.K. Aydınol, Mo doping of layered Li (NixMnyCo1-x-y-zMz)O2 cathode materials for lithium-ion batteries, Int. J. Energy Res. 42 (2018) 3888–3898. doi:10.1002/er.4121.
  • [12] B. Pişkin, M.K. Aydinol, Development and characterization of layered Li(NixMnyCo1−x−y)O2 cathode materials for lithium ion batteries, Int. J. Hydrogen Energy. 41 (2016) 9852–9859. doi:10.1016/j.ijhydene.2016.03.127.
  • [13] M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J. Itoh, M. Okada, T. Mouri, Preparation of Li Mn Ni1−O2 as a cathode for lithium-ion batteries, J. Power Sources. 74 (1998) 46–53. doi:10.1016/S0378-7753(98)00011-1.
  • [14] S. Liu, L. Xiong, C. He, Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode, J. Power Sources. 261 (2014) 285–291. doi:10.1016/j.jpowsour.2014.03.083.
  • [15] H. Zheng, Q. Sun, G. Liu, X. Song, V.S. Battaglia, Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells, J. Power Sources. 207 (2012) 134–140. doi:10.1016/j.jpowsour.2012.01.122.
  • [16] B. Ebin, S. Gürmen, C. Arslan, G. Lindbergh, Electrochemical properties of nanocrystalline LiFe xMn 2-xO 4 (x = 0.2-1.0) cathode particles prepared by ultrasonic spray pyrolysis method, Electrochim. Acta. 76 (2012) 368–374. doi:10.1016/j.electacta.2012.05.052.
  • [17] K. Karthikeyan, S. Amaresh, G.W. Lee, V. Aravindan, H. Kim, K.S. Kang, W.S. Kim, Y.S. Lee, Electrochemical performance of cobalt free, Li1.2(Mn0.32Ni0.32Fe0.16)O2 cathodes for lithium batteries, Electrochim. Acta. 68 (2012) 246–253. doi:10.1016/j.electacta.2012.02.076.
  • [18] D. Uzun, M. Doğrusöz, M. Mazman, E. Biçer, E. Avci, T. Şener, T.C. Kaypmaz, R. Demir-Cakan, Effect of MnO2 coating on layered Li(Li0.1Ni0.3Mn0.5Fe0.1)O2 cathode material for Li-ion batteries, Solid State Ionics. 249–250 (2013) 171–176. doi:10.1016/j.ssi.2013.08.012.
  • [19] M. Tabuchi, Y. Nabeshima, K. Ado, M. Shikano, H. Kageyama, K. Tatsumi, Material design concept for Fe-substituted Li2MnO3-based positive electrodes, J. Power Sources. 174 (2007) 554–559. doi:10.1016/j.jpowsour.2007.06.247.
  • [20] T.R. Penki, D. Shanmughasundaram, B. Kishore, A. V. Jeyaseelan, A.K. Subramani, N. Munichandraiah, Composite of Li-Rich Mn, Ni and Fe Oxides as Positive Electrode Materials for Li-Ion Battery, J. Electrochem. Soc. 163 (2016) A1493–A1502. doi:10.1149/2.0121608jes.
  • [21] L. Liu, K. Sun, N. Zhang, T. Yang, Improvement of high-voltage cycling behavior of Li(Ni1/3Co1/3Mn1/3)O2 cathodes by Mg, Cr, and Al substitution, J. Solid State Electrochem. 13 (2009) 1381–1386. doi:10.1007/s10008-008-0695-z.
  • [22] Y. Li, Y. Li, S. Zhong, F. Li, J. Yang, E. Properties of Y-Doped LiNi, Synthesis and Electrochemical Properties of Y-Doped LiNi 1/3 Mn 1/3 Co 1/3 O 2 Cathode Materials for Li-Ion Battery, Integr. Ferroelectr. 127 (2011) 150–156. doi:10.1080/10584587.2011.575736.
  • [23] A. Büyükburç, M.K. Aydinol, Effect of Cr and Mo doping on the electrochemical properties of freeze-dried LiCoO2, Int. J. Mater. Res. 105 (2014) 983–991. doi:10.3139/146.111104.
  • [24] S.-H. NA, H.-S. KIM, S.-I. MOON, The effect of Si doping on the electrochemical characteristics of LiNiMnCoO, in: Solid State Ionics, WORLD SCIENTIFIC, 2004: pp. 619–627. doi:10.1142/9789812702586_0069.
  • [25] Y.-P. Zhang, E.-Q. Liang, J.-X. Wang, B.-J. Yu, C.-Y. Wang, M.-W. Li, Effect of Aluminum Doping on the Stability of Lithium-Rich Layered Oxide Li[Li 0.23 Ni 0.15 Mn 0.52 Al 0.10 ]O 2 as Cathode Material, Int. J. Electrochem. Sci. 12 (2017) 9051–9060. doi:10.20964/2017.10.62.
  • [26] C.C. Wang, Y.C. Lin, P.H. Chou, Mitigation of layer to spinel conversion of a lithium-rich layered oxide cathode by substitution of Al in a lithium ion battery, RSC Adv. 5 (2015) 68919–68928. doi:10.1039/c5ra11665a.
  • [27] K.A. Ngalam, J. Chernova, Synthesis , Structure and Electrochemical Studies of NaNi 0 . 4 Mn 0 . 2 Co 0 . 2 O 2 for Na-ion Battery Applications, 51 (2012) 6220.
  • [28] L. Lutterotti, M. Bortolotti, G. Ischia, I. Lonardelli, Rietveld Texture Analysis from Diffraction Images Rietveld texture analysis from diffraction images, (2007). doi:10.1524/zksu.2007.2007.suppl.
  • [29] C. Savaş Uygur, B. Pişkin, M.K. Aydinol, Synthesis of Lix(Ni0.80Co0.15Al0.05)O2 Cathodes with Deficient and Ex-cess Lithium Using Ultrasonic Sound Assisted Co-Precipitation Meth-od for Li-Ion Batteries, Bull. Mater. Sci. xx, No. x (2017). doi:10.1007/sxxxx-0xx-1xyz-8.
  • [30] A.K. Arof, Characteristics of LiMO2 (M=Co, Ni, Ni0.2Co0.8, Ni0.8Co0.2) powders prepared from solution of their acetates, J. Alloys Compd. 449 (2008) 288–291. doi:10.1016/j.jallcom.2005.12.129.

CHEMICAL SYNTHESIS OF Al AND Co DOPED LiNi6Mn2Fe2O2 (NMF) CATHODE MATERIAL

Year 2019, Volume: 5 Issue: 2, 62 - 67, 11.12.2019
https://doi.org/10.22531/muglajsci.596341

Abstract

Al and Co doped LiNixMnyFezO2
(NMF) was synthesized using sol-gel method. The effect of dopants on the
structural stability of LiNixMnyFezO2
(NMF) cathode material was investigated. For this purpose, the powder
preparation was carried out using an aqueous solution of the nitrate precursors
followed by calcination at 850 °C 5h. The chemical composition of LiNixMnyFezO2
base material was selected as 622 (Ni/Mn/Fe atomic ratio) and were successfully
synthesized in layered form. Chemical composition of the obtained powders was
determined by Energy dispersive spectroscopy. Scanning electron microscopy was applied
to investigate the morphology of the powders. The crystal structure of the
samples was analyzed using X-ray diffraction and Rietveld analysis. Average
crystallite size from Rietveld refinement was calculated to be between 60-70
nm. Co-doped and Al-doped 622 cathode materials showed [006]/[102] and
[108]/[110] doublets, which is the sign of layered structure with hexagonal
ordering



 

References

  • [1] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature. 414 (2001) 359–367. doi:10.1038/35104644.
  • [2] J.B. Goodenough, K.-S. Park, The Li-Ion Rechargeable Battery: A Perspective, J. Am. Chem. Soc. (2013). doi:10.1021/ja3091438.
  • [3] J.B. Goodenough, Cathode materials: A personal perspective, J. Power Sources. 174 (2007) 996–1000. doi:10.1016/j.jpowsour.2007.06.217.
  • [4] C. Delmas, M. Ménétrier, L. Croguennec, I. Saadoune, A. Rougier, C. Pouillerie, G. Prado, M. Grüne, L. Fournès, An overview of the Li(Ni,M)O2 systems: syntheses, structures and properties, Electrochim. Acta. 45 (1999) 243–253. doi:10.1016/S0013-4686(99)00208-X.
  • [5] M. Broussely, P. Biensan, B. Simon, Lithium insertion into host materials: the key to success for Li ion batteries, Electrochim. Acta. 45 (1999) 3–22. doi:10.1016/S0013-4686(99)00189-9.
  • [6] B.B. Ammundsen, J. Paulsen, Ammundsen2001.pdf, (2001) 943–956.
  • [7] R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting, K. Albe, C. Hess, W. Jaegermann, Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches, Mater. Sci. Eng. B. 192 (2015) 3–25. doi:10.1016/j.mseb.2014.11.014.[8] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, ChemInform Abstract: Insertion Electrode Materials for Rechargeable Lithium Batteries, ChemInform. 29 (2010) no-no. doi:10.1002/chin.199837286.
  • [9] M.G.S.R. Thomas, W.I.F. David, J.B. Goodenough, P. Groves, Synthesis and structural characterization of the normal spinel Li[Ni2]O4, Mater. Res. Bull. 20 (1985) 1137–1146. doi:10.1016/0025-5408(85)90087-X.
  • [10] T.H. Kim, J.S. Park, S.K. Chang, S. Choi, J.H. Ryu, H.K. Song, The current move of lithium ion batteries towards the next phase, Adv. Energy Mater. 2 (2012) 860–872. doi:10.1002/aenm.201200028.
  • [11] B. Pişkin, C. Savaş Uygur, M.K. Aydınol, Mo doping of layered Li (NixMnyCo1-x-y-zMz)O2 cathode materials for lithium-ion batteries, Int. J. Energy Res. 42 (2018) 3888–3898. doi:10.1002/er.4121.
  • [12] B. Pişkin, M.K. Aydinol, Development and characterization of layered Li(NixMnyCo1−x−y)O2 cathode materials for lithium ion batteries, Int. J. Hydrogen Energy. 41 (2016) 9852–9859. doi:10.1016/j.ijhydene.2016.03.127.
  • [13] M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J. Itoh, M. Okada, T. Mouri, Preparation of Li Mn Ni1−O2 as a cathode for lithium-ion batteries, J. Power Sources. 74 (1998) 46–53. doi:10.1016/S0378-7753(98)00011-1.
  • [14] S. Liu, L. Xiong, C. He, Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode, J. Power Sources. 261 (2014) 285–291. doi:10.1016/j.jpowsour.2014.03.083.
  • [15] H. Zheng, Q. Sun, G. Liu, X. Song, V.S. Battaglia, Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells, J. Power Sources. 207 (2012) 134–140. doi:10.1016/j.jpowsour.2012.01.122.
  • [16] B. Ebin, S. Gürmen, C. Arslan, G. Lindbergh, Electrochemical properties of nanocrystalline LiFe xMn 2-xO 4 (x = 0.2-1.0) cathode particles prepared by ultrasonic spray pyrolysis method, Electrochim. Acta. 76 (2012) 368–374. doi:10.1016/j.electacta.2012.05.052.
  • [17] K. Karthikeyan, S. Amaresh, G.W. Lee, V. Aravindan, H. Kim, K.S. Kang, W.S. Kim, Y.S. Lee, Electrochemical performance of cobalt free, Li1.2(Mn0.32Ni0.32Fe0.16)O2 cathodes for lithium batteries, Electrochim. Acta. 68 (2012) 246–253. doi:10.1016/j.electacta.2012.02.076.
  • [18] D. Uzun, M. Doğrusöz, M. Mazman, E. Biçer, E. Avci, T. Şener, T.C. Kaypmaz, R. Demir-Cakan, Effect of MnO2 coating on layered Li(Li0.1Ni0.3Mn0.5Fe0.1)O2 cathode material for Li-ion batteries, Solid State Ionics. 249–250 (2013) 171–176. doi:10.1016/j.ssi.2013.08.012.
  • [19] M. Tabuchi, Y. Nabeshima, K. Ado, M. Shikano, H. Kageyama, K. Tatsumi, Material design concept for Fe-substituted Li2MnO3-based positive electrodes, J. Power Sources. 174 (2007) 554–559. doi:10.1016/j.jpowsour.2007.06.247.
  • [20] T.R. Penki, D. Shanmughasundaram, B. Kishore, A. V. Jeyaseelan, A.K. Subramani, N. Munichandraiah, Composite of Li-Rich Mn, Ni and Fe Oxides as Positive Electrode Materials for Li-Ion Battery, J. Electrochem. Soc. 163 (2016) A1493–A1502. doi:10.1149/2.0121608jes.
  • [21] L. Liu, K. Sun, N. Zhang, T. Yang, Improvement of high-voltage cycling behavior of Li(Ni1/3Co1/3Mn1/3)O2 cathodes by Mg, Cr, and Al substitution, J. Solid State Electrochem. 13 (2009) 1381–1386. doi:10.1007/s10008-008-0695-z.
  • [22] Y. Li, Y. Li, S. Zhong, F. Li, J. Yang, E. Properties of Y-Doped LiNi, Synthesis and Electrochemical Properties of Y-Doped LiNi 1/3 Mn 1/3 Co 1/3 O 2 Cathode Materials for Li-Ion Battery, Integr. Ferroelectr. 127 (2011) 150–156. doi:10.1080/10584587.2011.575736.
  • [23] A. Büyükburç, M.K. Aydinol, Effect of Cr and Mo doping on the electrochemical properties of freeze-dried LiCoO2, Int. J. Mater. Res. 105 (2014) 983–991. doi:10.3139/146.111104.
  • [24] S.-H. NA, H.-S. KIM, S.-I. MOON, The effect of Si doping on the electrochemical characteristics of LiNiMnCoO, in: Solid State Ionics, WORLD SCIENTIFIC, 2004: pp. 619–627. doi:10.1142/9789812702586_0069.
  • [25] Y.-P. Zhang, E.-Q. Liang, J.-X. Wang, B.-J. Yu, C.-Y. Wang, M.-W. Li, Effect of Aluminum Doping on the Stability of Lithium-Rich Layered Oxide Li[Li 0.23 Ni 0.15 Mn 0.52 Al 0.10 ]O 2 as Cathode Material, Int. J. Electrochem. Sci. 12 (2017) 9051–9060. doi:10.20964/2017.10.62.
  • [26] C.C. Wang, Y.C. Lin, P.H. Chou, Mitigation of layer to spinel conversion of a lithium-rich layered oxide cathode by substitution of Al in a lithium ion battery, RSC Adv. 5 (2015) 68919–68928. doi:10.1039/c5ra11665a.
  • [27] K.A. Ngalam, J. Chernova, Synthesis , Structure and Electrochemical Studies of NaNi 0 . 4 Mn 0 . 2 Co 0 . 2 O 2 for Na-ion Battery Applications, 51 (2012) 6220.
  • [28] L. Lutterotti, M. Bortolotti, G. Ischia, I. Lonardelli, Rietveld Texture Analysis from Diffraction Images Rietveld texture analysis from diffraction images, (2007). doi:10.1524/zksu.2007.2007.suppl.
  • [29] C. Savaş Uygur, B. Pişkin, M.K. Aydinol, Synthesis of Lix(Ni0.80Co0.15Al0.05)O2 Cathodes with Deficient and Ex-cess Lithium Using Ultrasonic Sound Assisted Co-Precipitation Meth-od for Li-Ion Batteries, Bull. Mater. Sci. xx, No. x (2017). doi:10.1007/sxxxx-0xx-1xyz-8.
  • [30] A.K. Arof, Characteristics of LiMO2 (M=Co, Ni, Ni0.2Co0.8, Ni0.8Co0.2) powders prepared from solution of their acetates, J. Alloys Compd. 449 (2008) 288–291. doi:10.1016/j.jallcom.2005.12.129.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Journals
Authors

Gulhan Cakmak 0000-0001-8121-1333

Publication Date December 11, 2019
Published in Issue Year 2019 Volume: 5 Issue: 2

Cite

APA Cakmak, G. (2019). CHEMICAL SYNTHESIS OF Al AND Co DOPED LiNi6Mn2Fe2O2 (NMF) CATHODE MATERIAL. Mugla Journal of Science and Technology, 5(2), 62-67. https://doi.org/10.22531/muglajsci.596341
AMA Cakmak G. CHEMICAL SYNTHESIS OF Al AND Co DOPED LiNi6Mn2Fe2O2 (NMF) CATHODE MATERIAL. Mugla Journal of Science and Technology. December 2019;5(2):62-67. doi:10.22531/muglajsci.596341
Chicago Cakmak, Gulhan. “CHEMICAL SYNTHESIS OF Al AND Co DOPED LiNi6Mn2Fe2O2 (NMF) CATHODE MATERIAL”. Mugla Journal of Science and Technology 5, no. 2 (December 2019): 62-67. https://doi.org/10.22531/muglajsci.596341.
EndNote Cakmak G (December 1, 2019) CHEMICAL SYNTHESIS OF Al AND Co DOPED LiNi6Mn2Fe2O2 (NMF) CATHODE MATERIAL. Mugla Journal of Science and Technology 5 2 62–67.
IEEE G. Cakmak, “CHEMICAL SYNTHESIS OF Al AND Co DOPED LiNi6Mn2Fe2O2 (NMF) CATHODE MATERIAL”, Mugla Journal of Science and Technology, vol. 5, no. 2, pp. 62–67, 2019, doi: 10.22531/muglajsci.596341.
ISNAD Cakmak, Gulhan. “CHEMICAL SYNTHESIS OF Al AND Co DOPED LiNi6Mn2Fe2O2 (NMF) CATHODE MATERIAL”. Mugla Journal of Science and Technology 5/2 (December 2019), 62-67. https://doi.org/10.22531/muglajsci.596341.
JAMA Cakmak G. CHEMICAL SYNTHESIS OF Al AND Co DOPED LiNi6Mn2Fe2O2 (NMF) CATHODE MATERIAL. Mugla Journal of Science and Technology. 2019;5:62–67.
MLA Cakmak, Gulhan. “CHEMICAL SYNTHESIS OF Al AND Co DOPED LiNi6Mn2Fe2O2 (NMF) CATHODE MATERIAL”. Mugla Journal of Science and Technology, vol. 5, no. 2, 2019, pp. 62-67, doi:10.22531/muglajsci.596341.
Vancouver Cakmak G. CHEMICAL SYNTHESIS OF Al AND Co DOPED LiNi6Mn2Fe2O2 (NMF) CATHODE MATERIAL. Mugla Journal of Science and Technology. 2019;5(2):62-7.

5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license