Research Article
BibTex RIS Cite
Year 2022, Volume: 8 Issue: 2, 82 - 89, 30.12.2022
https://doi.org/10.22531/muglajsci.1101048

Abstract

References

  • Bilgen, M., Comparison of Crystal Si Solar Cells Fabricated on p-type and n- type Float Zone Silicon Wafers, MSc. Thesis, Middle East Technical University, Ankara, 2013.
  • Gorka, B., Dogan, P., Sieber, Fenske, I.F., and Gall, S., “Low-temperature Epitaxy of Silicon by Electron Beam Evaporation,” Thin Solid Films, Vol. 515 No. 19 SPEC. ISS., pp. 7643–7646, 2007.
  • Dogan, P., Low Temperature Epitaxy of Silicon by Electron-Beam Evaporation for Polycrystalline Silicon Thin Film Solar Cells, PhD. Thesis, Berlin Institute of Technology, Berlin, 2011.
  • Hadibrata, W., Fabrication of Thin Crystalline Silicon Solar Cells, MSc.Thesis, Middle East Technical University, Ankara, 2017.
  • Kumar, K.R.T and Sukumar, G.D.S., Ramakrishna, M., “A Review on PV Cells and Nanocomposite‐Coated PV Systems”, International Journal of Energy Research, Vol. 42 No. 7, pp. 2305-2319, 2017.
  • Shanmugam, V., Khanna, A., Perez, D. J., Tabajonda, R. “21% Efficient Screen-Printed N-Type Silicon Wafer Solar Cells With Implanted Phosphorus Front Surface Field, Solar Energy Materials and Solar Cells, Vol. 186, pp. 124–130, 2018.
  • Hashmi, G., Akand, A. R., Hoq, M., and Rahman, H., “Study of the Enhancement of the Efficiency of the Monocrystalline Silicon Solar Cell by Optimizing Effective Parameters Using PC1D Simulation,” Silicon, Vol. 10 No. 4, pp. 1653–1660, 2018.
  • Yamamoto, K., "Thin Film Crystalline Solar Cells", JSAP Int., Vol. 7 No.7, pp. 12-19, 2003.
  • Bergmann, R. B., and Werner, J. H. “The Future of Crystalline Silicon Films on Foreign Substrates", Thin Solid Films, Vol. 403-404, pp. 162-169, 2002.
  • Ranabhat, K., Patrikeev, L., Revina, A. A., Andrianov, K., Lapshinsky, V. and Sofronova, E. “An Introduction to Solar Cell Technology,” Journal of Applied Engineering Science, Vol. 14 No. 4, pp. 481–491, 2016.
  • Belarbi, M., Benyoucef, A. and Benyoucef, B. “Simulation of the Solar Cells With PC1D, Application to Cells Based on Silicon, ” Advanced Energy: An International Journal, Vol. 1 No. 3, pp. 1–10, 2014.
  • Jiang, C., Li, T. Z., Zhang, X. and Hou, L., “Simulation of Silicon Solar Cell Using PC1D,” Advanced Materials Research, Vol. 383–390, pp. 7032–7036, 2012.
  • Tool, C. J. J., Burgers, A. R., Manshanden, P., Weeber, A. W. and Van Straaten, B. H. M., “Influence of Wafer Thickness on The Performance of Multicrystalline Si Solar Cells: An Experimental Study,” Progress in Photovoltaics: Research and Application, Vol. 10 No. 4, pp. 279–291, 2002.
  • Zaki, A. A. and A. A. El-Amin, A. A. “Effect of cell thickness on the electrical and optical properties of thin film silicon solar cell,” Optics and Laser Technology, Vol. 97, pp. 71–76, 2017.
  • Andreani, L. C., Bozzola, A., Kowalczewski, P., Liscidini, M. and Redorici, L., “Silicon Solar Cells: Toward the Efficiency Limits,” Advanced Physics X, Vol. 4 No. 1, 2019.
  • Shockley, W. and Queisser, H. J., “Detailed Balance Limit of Efficiency of pn Junction Solar Cells”, Journal of Applied Physics, Vol. 510, 1961.
  • Veith-Wolf, B. A., Schäfer, S., Brendel, R. and Schmidt, J., “Reassessment of Intrinsic Lifetime Limit in n-type Crystalline Silicon and Implication on Maximum Solar Cell Efficiency,” Solar Energy Materials and Solar Cells, Vol. 186, pp. 194–199, 2018.
  • Glunz, S. W., Rein, S., Lee, J. Y. and Warta, W. “Minority Carrier Lifetime Degradation in Boron-doped Czochralski Silicon,” Journal of Applied Physics, Vol. 90 No. 5, pp. 2397–2404, 2001.
  • Ferdiansjah, F. and Djoko, F., “Effect of Bulk Doping Level and Wafer Thickness on the Performance of Monocrystalline Silicon Solar Cell,” ARPN Journal of Engineering and Applied Sciences, Vol. 11 No. 6, pp. 4011–4015, 2016.
  • Üzüm, A. and Mandong, A. M., “Analysis of Silicon Solar Cell Device Parameters Using PC1D,” Sakarya Univiversity Journal of Science, Vol. 23, No. 44246, pp.1190–1197, 2019.
  • Goetzberger, A, Luther, J. and Willeke, G. “Solar Cells : Past , Present , Future,” Solar Energy Materials and Solar Cells, Vol. 74, pp. 1–11, 2002.
  • Davidson, L. M., Strategies for High Efficiency Silicon Solar Cells, MSc. Thesis, University of Iowa, Iowa, 2017.
  • Dhanasekaran, P. C. and Gopalam, B. S. V., “Effect of Junction Depth on The Performance of a Diffused n+p Silicon Solar Cell,” Solid State Electronics, Vol. 24 No. 12, pp. 1077–1080, 1981.
  • Gangopadhyay, U., Roy, S., Garain, S., Jana, S., Das, S. “Comparative Simulation Study between n- type and p- type Silicon Solar Cells and the Variation of Efficiency of n- type Solar Cell by the Application of Passivation Layer with Different Thickness using AFORS HET and PC1D.,” IOSR Journal of Engineering, Vol. 02 No. 08, pp. 41–48, 2012.
  • Wu, D., Rui, J., Ding, W., “Optimization of Al2O3 /SiNx Stacked Antireflection Structures for n-type Surface-Passivated Crystalline Silicon Solar Cells,” Journal of Semiconductors, Vol. 32 No. 9, 2011.
  • Salman, K. A., “Effect of Surface Texturing Processes on the Performance of Crystalline Silicon Solar Cell,” Solar Energy, Vol. 147, pp. 228–231, 2017.
  • Schmidt, J., Werner, F., Veith, B., Zielke, D., Steingrube, S., Altermatt, P. P., Gatz, S., Dullweber, T., Brendel, R., “Advances in Surface Passivation of Silicon Solar Cells,” Energy Procedia, Vol. 15 No. 2008, pp. 30–39, 2012.
  • Manzoor, S., Light Trapping in Monocrystalline Silicon Solar Cells Using Random Upright Pyramids, MSc. Thesis, Arizona State University, Arizona, 2014.
  • Chiao, S. C., Zhou, J. L. and Macleod, H. A., “Optimized Design of an Antireflection Coating for Textured Silicon Solar Cells,” Applied Optics., Vol. 32 No. 28, pp. 5557-5560, 1993.
  • Campbell, P. and Green, M. A., “Light Trapping Properties of Pyramidally Textured Surfaces,” Journal of Applied Physics, Vol. 62 No.1, pp. 243–249, 1987.
  • Altinoluk, H. S., Light Trapping Micro and Nanostructures Fabricated by Top Down Approaches for Solar Cell Applications, PhD. Thesis, Middle East Technical University, Ankara, 2016.
  • Tool, C. J. J., Manshanden, P., Burgers, A. R. and Weeber, A. W., “Wafer Thickness, Texture and Performance of Multi Crystalline Silicon Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 90 No. 18–19, pp. 3165–3173, 2006.
  • Sahoo, K. C., Li, Y. and Chang, E. Y. “Shape Effect of Silicon Nitride Subwavelength Structure on Reflectance for Silicon Solar Cells, IEEE Transactions on Electron Devices, Vol. 57, pp. 2427-2433, 2010.
  • Sharma, R., “Silicon Nitride as Antireflection Coating to Enhance the Conversion Efficiency of Silicon Solar Cells,” Turkish Jornal of Physics, Vol. 42 No. 4, pp. 350–355, 2018.
  • Al-turk, S., Analytic Optimization Modeling of Anti-Reflection Coatings for Solar Cells, MSc. Thesis, McMaster University, Canada, 2011.
  • Diop, M. M., Diaw, A., Mbengue, N., Ba, O., Diagne, M., Niasse, O. A., Ba, B., Sarr, J., "Optimization and Modeling of Antireflective Layers for Silicon Solar Cells: In Search of Optimal Materials", Materials Sciences and Applications, Vol.9 No.8, 2018.
  • Sharma, R., Gupta, A. and Virdi, A., “Effect of Single and Double Layer Antireflection Coating to Enhance Photovoltaic Efficiency of Silicon Solar,” Journal of Nano and Electronics Physics, Vol. 9 No. 2, 2017.
  • Mandong, A. M., Design and Simulation of Single, Double and Multi Layer Antireflection Coating for Crystalline Silicon Solar Cell, MSc. Thesis, Karadeniz Technical University, Trabzon, 2019.

ON THE PERFORMANCE LIMITS FOR MONO CRYSTALLINE SILICON SOLAR CELLS: A COMPARATIVE STUDY

Year 2022, Volume: 8 Issue: 2, 82 - 89, 30.12.2022
https://doi.org/10.22531/muglajsci.1101048

Abstract

In this study the solar cell parameters depending on the electrical and physical properties of a semiconductor material were simulated and optimized with high accuracy and with a short simulation time. To obtain highly efficient solar cells in theory, later on for practical applications, Personal Computer One Dimensional (PC1D) software simulation program was used. The parameters were the thickness of emitter and absorber layers, type of absorber layer, doping profile, antireflective coating (ARC) materials and surface texturing. The results observed with the optimized parameters were compared and verified with the experimental results in the literature.

References

  • Bilgen, M., Comparison of Crystal Si Solar Cells Fabricated on p-type and n- type Float Zone Silicon Wafers, MSc. Thesis, Middle East Technical University, Ankara, 2013.
  • Gorka, B., Dogan, P., Sieber, Fenske, I.F., and Gall, S., “Low-temperature Epitaxy of Silicon by Electron Beam Evaporation,” Thin Solid Films, Vol. 515 No. 19 SPEC. ISS., pp. 7643–7646, 2007.
  • Dogan, P., Low Temperature Epitaxy of Silicon by Electron-Beam Evaporation for Polycrystalline Silicon Thin Film Solar Cells, PhD. Thesis, Berlin Institute of Technology, Berlin, 2011.
  • Hadibrata, W., Fabrication of Thin Crystalline Silicon Solar Cells, MSc.Thesis, Middle East Technical University, Ankara, 2017.
  • Kumar, K.R.T and Sukumar, G.D.S., Ramakrishna, M., “A Review on PV Cells and Nanocomposite‐Coated PV Systems”, International Journal of Energy Research, Vol. 42 No. 7, pp. 2305-2319, 2017.
  • Shanmugam, V., Khanna, A., Perez, D. J., Tabajonda, R. “21% Efficient Screen-Printed N-Type Silicon Wafer Solar Cells With Implanted Phosphorus Front Surface Field, Solar Energy Materials and Solar Cells, Vol. 186, pp. 124–130, 2018.
  • Hashmi, G., Akand, A. R., Hoq, M., and Rahman, H., “Study of the Enhancement of the Efficiency of the Monocrystalline Silicon Solar Cell by Optimizing Effective Parameters Using PC1D Simulation,” Silicon, Vol. 10 No. 4, pp. 1653–1660, 2018.
  • Yamamoto, K., "Thin Film Crystalline Solar Cells", JSAP Int., Vol. 7 No.7, pp. 12-19, 2003.
  • Bergmann, R. B., and Werner, J. H. “The Future of Crystalline Silicon Films on Foreign Substrates", Thin Solid Films, Vol. 403-404, pp. 162-169, 2002.
  • Ranabhat, K., Patrikeev, L., Revina, A. A., Andrianov, K., Lapshinsky, V. and Sofronova, E. “An Introduction to Solar Cell Technology,” Journal of Applied Engineering Science, Vol. 14 No. 4, pp. 481–491, 2016.
  • Belarbi, M., Benyoucef, A. and Benyoucef, B. “Simulation of the Solar Cells With PC1D, Application to Cells Based on Silicon, ” Advanced Energy: An International Journal, Vol. 1 No. 3, pp. 1–10, 2014.
  • Jiang, C., Li, T. Z., Zhang, X. and Hou, L., “Simulation of Silicon Solar Cell Using PC1D,” Advanced Materials Research, Vol. 383–390, pp. 7032–7036, 2012.
  • Tool, C. J. J., Burgers, A. R., Manshanden, P., Weeber, A. W. and Van Straaten, B. H. M., “Influence of Wafer Thickness on The Performance of Multicrystalline Si Solar Cells: An Experimental Study,” Progress in Photovoltaics: Research and Application, Vol. 10 No. 4, pp. 279–291, 2002.
  • Zaki, A. A. and A. A. El-Amin, A. A. “Effect of cell thickness on the electrical and optical properties of thin film silicon solar cell,” Optics and Laser Technology, Vol. 97, pp. 71–76, 2017.
  • Andreani, L. C., Bozzola, A., Kowalczewski, P., Liscidini, M. and Redorici, L., “Silicon Solar Cells: Toward the Efficiency Limits,” Advanced Physics X, Vol. 4 No. 1, 2019.
  • Shockley, W. and Queisser, H. J., “Detailed Balance Limit of Efficiency of pn Junction Solar Cells”, Journal of Applied Physics, Vol. 510, 1961.
  • Veith-Wolf, B. A., Schäfer, S., Brendel, R. and Schmidt, J., “Reassessment of Intrinsic Lifetime Limit in n-type Crystalline Silicon and Implication on Maximum Solar Cell Efficiency,” Solar Energy Materials and Solar Cells, Vol. 186, pp. 194–199, 2018.
  • Glunz, S. W., Rein, S., Lee, J. Y. and Warta, W. “Minority Carrier Lifetime Degradation in Boron-doped Czochralski Silicon,” Journal of Applied Physics, Vol. 90 No. 5, pp. 2397–2404, 2001.
  • Ferdiansjah, F. and Djoko, F., “Effect of Bulk Doping Level and Wafer Thickness on the Performance of Monocrystalline Silicon Solar Cell,” ARPN Journal of Engineering and Applied Sciences, Vol. 11 No. 6, pp. 4011–4015, 2016.
  • Üzüm, A. and Mandong, A. M., “Analysis of Silicon Solar Cell Device Parameters Using PC1D,” Sakarya Univiversity Journal of Science, Vol. 23, No. 44246, pp.1190–1197, 2019.
  • Goetzberger, A, Luther, J. and Willeke, G. “Solar Cells : Past , Present , Future,” Solar Energy Materials and Solar Cells, Vol. 74, pp. 1–11, 2002.
  • Davidson, L. M., Strategies for High Efficiency Silicon Solar Cells, MSc. Thesis, University of Iowa, Iowa, 2017.
  • Dhanasekaran, P. C. and Gopalam, B. S. V., “Effect of Junction Depth on The Performance of a Diffused n+p Silicon Solar Cell,” Solid State Electronics, Vol. 24 No. 12, pp. 1077–1080, 1981.
  • Gangopadhyay, U., Roy, S., Garain, S., Jana, S., Das, S. “Comparative Simulation Study between n- type and p- type Silicon Solar Cells and the Variation of Efficiency of n- type Solar Cell by the Application of Passivation Layer with Different Thickness using AFORS HET and PC1D.,” IOSR Journal of Engineering, Vol. 02 No. 08, pp. 41–48, 2012.
  • Wu, D., Rui, J., Ding, W., “Optimization of Al2O3 /SiNx Stacked Antireflection Structures for n-type Surface-Passivated Crystalline Silicon Solar Cells,” Journal of Semiconductors, Vol. 32 No. 9, 2011.
  • Salman, K. A., “Effect of Surface Texturing Processes on the Performance of Crystalline Silicon Solar Cell,” Solar Energy, Vol. 147, pp. 228–231, 2017.
  • Schmidt, J., Werner, F., Veith, B., Zielke, D., Steingrube, S., Altermatt, P. P., Gatz, S., Dullweber, T., Brendel, R., “Advances in Surface Passivation of Silicon Solar Cells,” Energy Procedia, Vol. 15 No. 2008, pp. 30–39, 2012.
  • Manzoor, S., Light Trapping in Monocrystalline Silicon Solar Cells Using Random Upright Pyramids, MSc. Thesis, Arizona State University, Arizona, 2014.
  • Chiao, S. C., Zhou, J. L. and Macleod, H. A., “Optimized Design of an Antireflection Coating for Textured Silicon Solar Cells,” Applied Optics., Vol. 32 No. 28, pp. 5557-5560, 1993.
  • Campbell, P. and Green, M. A., “Light Trapping Properties of Pyramidally Textured Surfaces,” Journal of Applied Physics, Vol. 62 No.1, pp. 243–249, 1987.
  • Altinoluk, H. S., Light Trapping Micro and Nanostructures Fabricated by Top Down Approaches for Solar Cell Applications, PhD. Thesis, Middle East Technical University, Ankara, 2016.
  • Tool, C. J. J., Manshanden, P., Burgers, A. R. and Weeber, A. W., “Wafer Thickness, Texture and Performance of Multi Crystalline Silicon Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 90 No. 18–19, pp. 3165–3173, 2006.
  • Sahoo, K. C., Li, Y. and Chang, E. Y. “Shape Effect of Silicon Nitride Subwavelength Structure on Reflectance for Silicon Solar Cells, IEEE Transactions on Electron Devices, Vol. 57, pp. 2427-2433, 2010.
  • Sharma, R., “Silicon Nitride as Antireflection Coating to Enhance the Conversion Efficiency of Silicon Solar Cells,” Turkish Jornal of Physics, Vol. 42 No. 4, pp. 350–355, 2018.
  • Al-turk, S., Analytic Optimization Modeling of Anti-Reflection Coatings for Solar Cells, MSc. Thesis, McMaster University, Canada, 2011.
  • Diop, M. M., Diaw, A., Mbengue, N., Ba, O., Diagne, M., Niasse, O. A., Ba, B., Sarr, J., "Optimization and Modeling of Antireflective Layers for Silicon Solar Cells: In Search of Optimal Materials", Materials Sciences and Applications, Vol.9 No.8, 2018.
  • Sharma, R., Gupta, A. and Virdi, A., “Effect of Single and Double Layer Antireflection Coating to Enhance Photovoltaic Efficiency of Silicon Solar,” Journal of Nano and Electronics Physics, Vol. 9 No. 2, 2017.
  • Mandong, A. M., Design and Simulation of Single, Double and Multi Layer Antireflection Coating for Crystalline Silicon Solar Cell, MSc. Thesis, Karadeniz Technical University, Trabzon, 2019.
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Journals
Authors

Moatasem A. M. Al-sultan This is me 0000-0002-4270-2401

Serra Altınoluk 0000-0003-4347-3804

Early Pub Date November 2, 2022
Publication Date December 30, 2022
Published in Issue Year 2022 Volume: 8 Issue: 2

Cite

APA Al-sultan, M. A. M., & Altınoluk, S. (2022). ON THE PERFORMANCE LIMITS FOR MONO CRYSTALLINE SILICON SOLAR CELLS: A COMPARATIVE STUDY. Mugla Journal of Science and Technology, 8(2), 82-89. https://doi.org/10.22531/muglajsci.1101048
AMA Al-sultan MAM, Altınoluk S. ON THE PERFORMANCE LIMITS FOR MONO CRYSTALLINE SILICON SOLAR CELLS: A COMPARATIVE STUDY. MJST. December 2022;8(2):82-89. doi:10.22531/muglajsci.1101048
Chicago Al-sultan, Moatasem A. M., and Serra Altınoluk. “ON THE PERFORMANCE LIMITS FOR MONO CRYSTALLINE SILICON SOLAR CELLS: A COMPARATIVE STUDY”. Mugla Journal of Science and Technology 8, no. 2 (December 2022): 82-89. https://doi.org/10.22531/muglajsci.1101048.
EndNote Al-sultan MAM, Altınoluk S (December 1, 2022) ON THE PERFORMANCE LIMITS FOR MONO CRYSTALLINE SILICON SOLAR CELLS: A COMPARATIVE STUDY. Mugla Journal of Science and Technology 8 2 82–89.
IEEE M. A. M. Al-sultan and S. Altınoluk, “ON THE PERFORMANCE LIMITS FOR MONO CRYSTALLINE SILICON SOLAR CELLS: A COMPARATIVE STUDY”, MJST, vol. 8, no. 2, pp. 82–89, 2022, doi: 10.22531/muglajsci.1101048.
ISNAD Al-sultan, Moatasem A. M. - Altınoluk, Serra. “ON THE PERFORMANCE LIMITS FOR MONO CRYSTALLINE SILICON SOLAR CELLS: A COMPARATIVE STUDY”. Mugla Journal of Science and Technology 8/2 (December 2022), 82-89. https://doi.org/10.22531/muglajsci.1101048.
JAMA Al-sultan MAM, Altınoluk S. ON THE PERFORMANCE LIMITS FOR MONO CRYSTALLINE SILICON SOLAR CELLS: A COMPARATIVE STUDY. MJST. 2022;8:82–89.
MLA Al-sultan, Moatasem A. M. and Serra Altınoluk. “ON THE PERFORMANCE LIMITS FOR MONO CRYSTALLINE SILICON SOLAR CELLS: A COMPARATIVE STUDY”. Mugla Journal of Science and Technology, vol. 8, no. 2, 2022, pp. 82-89, doi:10.22531/muglajsci.1101048.
Vancouver Al-sultan MAM, Altınoluk S. ON THE PERFORMANCE LIMITS FOR MONO CRYSTALLINE SILICON SOLAR CELLS: A COMPARATIVE STUDY. MJST. 2022;8(2):82-9.

5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license