Research Article
BibTex RIS Cite

ÜNİFORM IŞINIM KOŞULLARI İÇİN BİR HİBRİT AKIM MODÜLASYONLU ÇİFT AKTİF KÖPRÜ FOTOVOLTAİK DC/DC DÖNÜŞTÜRÜCÜNÜN ANALİZİ

Year 2024, Volume: 10 Issue: 1, 82 - 88, 30.06.2024
https://doi.org/10.22531/muglajsci.1351487

Abstract

Fotovoltaik (PV) modüllerin enerjisi yüksek dönüşüm oranlı güç elektroniği dönüştürücüleri ile DC şebekeye bağlanabilir. Genellikle bu amaç için iki-aşamalı izoleli boost-tabanlı dönüştürücüler kullanılmaktadır. Fakat bu tipteki dönüştürücüler, yüksek gerilim seviyelerine dayanması gereken yüksek sayıda yarı-iletken anahtar içermekte ve yüksek endüktans değerine sahip büyük manyetik nüve boyutlu giriş bobini kullanmaktadır. Bu problemleri çözmek için, tek-aşamalı hibrit akım modülasyonlu çift aktif köprü (DAB) izoleli dönüştürücü literatürde önerilmiştir. Fakat bu dönüştürücü kısmi gölgeleme (PS) dikkate alınarak tasarlanmıştır ve PS PV tarlalarında nadiren oluşmaktadır. Bu çalışmada, DAB PV DC/DC dönüştürücün PV tarla çalışmalarında daha uygun olan üniform ışınım (UI) koşulları için tasarım metodolojisi verilmiştir. Ek olarak, HCM DAB PV DC/DC dönüştürücünün UI ve PS’ye ait tasarımları birbiri ile karşılaştırılmıştır. Analizler göstermektedir ki UI-tabanlı tasarım PS-tabanlı tasarıma göre %3.88 daha küçük RMS2akım, %3.56 daha küçük tepe akımı, %2.35 daha küçük nüve boyutuna sahiptir. Dolayısı ile UI-tabanlı tasarım daha verimli, daha ucuz ve boyut açısından daha küçük olabilir.

References

  • IEA, “Renewables 2022,” Reporte, 2022.
  • Kouro, S., Leon, J. I., Vinnikov, D., and Franquelo, L. G., “Grid-connected photovoltaic systems: An overview of recent research and emerging PV converter technology,” IEEE Industrial Electronics Magazine, vol. 9, no. 1, 2015.
  • Wang, P., Goel, L., Liu, X., and Choo, F. H., “Harmonizing AC and DC: A Hybrid AC/DC future grid solution,” IEEE Power and Energy Magazine, vol. 11, no. 3, 2013.
  • Yuan, X., and Zhang, Y., “Status and opportunities of photovoltaic inverters in grid-tied and micro-grid systems,” in Conference Proceedings - IPEMC 2006: CES/IEEE 5th International Power Electronics and Motion Control Conference, 2007.
  • Walker, G. R., and Pierce, J. C., “Photovoltaic DC-DC module integrated converter for novel cascaded and bypass grid connection topologies -Design and optimisation,” in PESC Record - IEEE Annual Power Electronics Specialists Conference, 2006.
  • Edwin, F., Xiao, W., and Khadkikar, V., “Topology review of single phase grid-connected module integrated converters for PV applications,” in IECON Proceedings, 2012.
  • Forouzesh, M., Siwakoti, Y. P., Gorji, S. A., Blaabjerg, F., and Lehman, B., “Step-Up DC-DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans Power Electron, vol. 32, no. 12, 2017.
  • Guo, K., Cui, L., Mao, M., Zhou, L., and Zhang, Q., “An Improved Gray Wolf Optimizer MPPT Algorithm for PV System with BFBIC Converter under Partial Shading,” IEEE Access, vol. 8, 2020.
  • Zhao, X., Chen, C. W., and Lai, J. S., “A High-Efficiency Active-Boost-Rectifier-Based Converter with a Novel Double-Pulse Duty Cycle Modulation for PV to DC Microgrid Applications,” IEEE Trans Power Electron, vol. 34, no. 8, 2019.
  • De Doncker, R. W. A. A., Divan, D. M., and Kheraluwala, M. H, “A Three-Phase Soft-Switched High-Power-Density DC/DC Converter for High-Power Applications,” IEEE Trans Ind Appl, vol. 27, no. 1, 1991.
  • Zengin, S., and Boztepe, M., “A Novel Current Modulation Method to Eliminate Low-Frequency Harmonics in Single-Stage Dual Active Bridge AC-DC Converter,” IEEE Transactions on Industrial Electronics, vol. 67, no. 2, 2020.
  • Krismer, F., and Kolar, J. W., “Closed form solution for minimum conduction loss modulation of DAB converters,” IEEE Trans Power Electron, vol. 27, no. 1, 2012.
  • Bai, H., and Mi, C., “Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge dc-dc converters using novel dual-phase-shift control,” IEEE Trans Power Electron, vol. 23, no. 6, 2008.
  • Zengin, S., “A hybrid current modulated DAB DC/DC converter for connecting PV modules to DC grid considering partial shading,” Computers and Electrical Engineering, vol. 101, 2022.
  • García, M., Vera, J. A., Marroyo, L., Lorenzo, E., and Pérez, M., “Solar-tracking PV plants in Navarra: A 10 MW assessment,” Progress in Photovoltaics: Research and Applications, vol. 17, no. 5, 2009.
  • Petrone, G., Ramos‐Paja, C. A., and Spagnuolo, G., Photovoltaic Sources Modeling. 2017.
  • De Soto, W., Klein, S. A., and Beckman, W. A., “Improvement and validation of a model for photovoltaic array performance,” Solar Energy, vol. 80, no. 1, 2006.
  • Sun, V., Asanakham, A., Deethayat, T., and Kiatsiriroat, T., “A new method for evaluating nominal operating cell temperature (NOCT) of unglazed photovoltaic thermal module,” Energy Reports, vol. 6, 2020.
  • Erickson, R. W., and Maksimovic, D., Fundamentals of Power Electronics, 2001.

ANALYSIS OF A HYBRID CURRENT MODULATED DUAL ACTIVE BRIDGE PHOTOVOLTAIC DC/DC CONVERTER FOR UNIFORM IRRADIATION CONDITIONS

Year 2024, Volume: 10 Issue: 1, 82 - 88, 30.06.2024
https://doi.org/10.22531/muglajsci.1351487

Abstract

The energy of Photovoltaic (PV) modules can be connected to DC grid with high step-up ratio power electronics converters. Generally, two-stage isolated boost-based converters are used for this purpose. However, these types of converters consist of a high number of semiconductors which must withstand high voltage levels, and they utilize input inductance which has high value and large magnetic core size. To solve these problems, single-stage conversion-based Hybrid Current Modulated (HCM) isolated Dual Active Bridge (DAB) converter is proposed in the literature. However, this converter is designed for considering partial shading (PS), and PS rarely occurs in PV farms. In this study, the design methodology of DAB PV DC/DC converter is given for uniform irradiation (UI) conditions that is more suitable for PV farms. In addition, UI and PS designs of HCM DAB PV DC/DC converter are compared to each other. Analyses show that UI-based design has 3.88% smaller RMS2 current, 3.56% smaller peak current and 2.35% smaller core size than the PS-based design. Hence, UI-based design can be more efficient, cheaper, and smaller in size.

References

  • IEA, “Renewables 2022,” Reporte, 2022.
  • Kouro, S., Leon, J. I., Vinnikov, D., and Franquelo, L. G., “Grid-connected photovoltaic systems: An overview of recent research and emerging PV converter technology,” IEEE Industrial Electronics Magazine, vol. 9, no. 1, 2015.
  • Wang, P., Goel, L., Liu, X., and Choo, F. H., “Harmonizing AC and DC: A Hybrid AC/DC future grid solution,” IEEE Power and Energy Magazine, vol. 11, no. 3, 2013.
  • Yuan, X., and Zhang, Y., “Status and opportunities of photovoltaic inverters in grid-tied and micro-grid systems,” in Conference Proceedings - IPEMC 2006: CES/IEEE 5th International Power Electronics and Motion Control Conference, 2007.
  • Walker, G. R., and Pierce, J. C., “Photovoltaic DC-DC module integrated converter for novel cascaded and bypass grid connection topologies -Design and optimisation,” in PESC Record - IEEE Annual Power Electronics Specialists Conference, 2006.
  • Edwin, F., Xiao, W., and Khadkikar, V., “Topology review of single phase grid-connected module integrated converters for PV applications,” in IECON Proceedings, 2012.
  • Forouzesh, M., Siwakoti, Y. P., Gorji, S. A., Blaabjerg, F., and Lehman, B., “Step-Up DC-DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans Power Electron, vol. 32, no. 12, 2017.
  • Guo, K., Cui, L., Mao, M., Zhou, L., and Zhang, Q., “An Improved Gray Wolf Optimizer MPPT Algorithm for PV System with BFBIC Converter under Partial Shading,” IEEE Access, vol. 8, 2020.
  • Zhao, X., Chen, C. W., and Lai, J. S., “A High-Efficiency Active-Boost-Rectifier-Based Converter with a Novel Double-Pulse Duty Cycle Modulation for PV to DC Microgrid Applications,” IEEE Trans Power Electron, vol. 34, no. 8, 2019.
  • De Doncker, R. W. A. A., Divan, D. M., and Kheraluwala, M. H, “A Three-Phase Soft-Switched High-Power-Density DC/DC Converter for High-Power Applications,” IEEE Trans Ind Appl, vol. 27, no. 1, 1991.
  • Zengin, S., and Boztepe, M., “A Novel Current Modulation Method to Eliminate Low-Frequency Harmonics in Single-Stage Dual Active Bridge AC-DC Converter,” IEEE Transactions on Industrial Electronics, vol. 67, no. 2, 2020.
  • Krismer, F., and Kolar, J. W., “Closed form solution for minimum conduction loss modulation of DAB converters,” IEEE Trans Power Electron, vol. 27, no. 1, 2012.
  • Bai, H., and Mi, C., “Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge dc-dc converters using novel dual-phase-shift control,” IEEE Trans Power Electron, vol. 23, no. 6, 2008.
  • Zengin, S., “A hybrid current modulated DAB DC/DC converter for connecting PV modules to DC grid considering partial shading,” Computers and Electrical Engineering, vol. 101, 2022.
  • García, M., Vera, J. A., Marroyo, L., Lorenzo, E., and Pérez, M., “Solar-tracking PV plants in Navarra: A 10 MW assessment,” Progress in Photovoltaics: Research and Applications, vol. 17, no. 5, 2009.
  • Petrone, G., Ramos‐Paja, C. A., and Spagnuolo, G., Photovoltaic Sources Modeling. 2017.
  • De Soto, W., Klein, S. A., and Beckman, W. A., “Improvement and validation of a model for photovoltaic array performance,” Solar Energy, vol. 80, no. 1, 2006.
  • Sun, V., Asanakham, A., Deethayat, T., and Kiatsiriroat, T., “A new method for evaluating nominal operating cell temperature (NOCT) of unglazed photovoltaic thermal module,” Energy Reports, vol. 6, 2020.
  • Erickson, R. W., and Maksimovic, D., Fundamentals of Power Electronics, 2001.
There are 19 citations in total.

Details

Primary Language English
Subjects Power Electronics
Journal Section Articles
Authors

Sinan Zengin 0000-0002-7357-4836

Publication Date June 30, 2024
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Zengin, S. (2024). ANALYSIS OF A HYBRID CURRENT MODULATED DUAL ACTIVE BRIDGE PHOTOVOLTAIC DC/DC CONVERTER FOR UNIFORM IRRADIATION CONDITIONS. Mugla Journal of Science and Technology, 10(1), 82-88. https://doi.org/10.22531/muglajsci.1351487
AMA Zengin S. ANALYSIS OF A HYBRID CURRENT MODULATED DUAL ACTIVE BRIDGE PHOTOVOLTAIC DC/DC CONVERTER FOR UNIFORM IRRADIATION CONDITIONS. MJST. June 2024;10(1):82-88. doi:10.22531/muglajsci.1351487
Chicago Zengin, Sinan. “ANALYSIS OF A HYBRID CURRENT MODULATED DUAL ACTIVE BRIDGE PHOTOVOLTAIC DC/DC CONVERTER FOR UNIFORM IRRADIATION CONDITIONS”. Mugla Journal of Science and Technology 10, no. 1 (June 2024): 82-88. https://doi.org/10.22531/muglajsci.1351487.
EndNote Zengin S (June 1, 2024) ANALYSIS OF A HYBRID CURRENT MODULATED DUAL ACTIVE BRIDGE PHOTOVOLTAIC DC/DC CONVERTER FOR UNIFORM IRRADIATION CONDITIONS. Mugla Journal of Science and Technology 10 1 82–88.
IEEE S. Zengin, “ANALYSIS OF A HYBRID CURRENT MODULATED DUAL ACTIVE BRIDGE PHOTOVOLTAIC DC/DC CONVERTER FOR UNIFORM IRRADIATION CONDITIONS”, MJST, vol. 10, no. 1, pp. 82–88, 2024, doi: 10.22531/muglajsci.1351487.
ISNAD Zengin, Sinan. “ANALYSIS OF A HYBRID CURRENT MODULATED DUAL ACTIVE BRIDGE PHOTOVOLTAIC DC/DC CONVERTER FOR UNIFORM IRRADIATION CONDITIONS”. Mugla Journal of Science and Technology 10/1 (June 2024), 82-88. https://doi.org/10.22531/muglajsci.1351487.
JAMA Zengin S. ANALYSIS OF A HYBRID CURRENT MODULATED DUAL ACTIVE BRIDGE PHOTOVOLTAIC DC/DC CONVERTER FOR UNIFORM IRRADIATION CONDITIONS. MJST. 2024;10:82–88.
MLA Zengin, Sinan. “ANALYSIS OF A HYBRID CURRENT MODULATED DUAL ACTIVE BRIDGE PHOTOVOLTAIC DC/DC CONVERTER FOR UNIFORM IRRADIATION CONDITIONS”. Mugla Journal of Science and Technology, vol. 10, no. 1, 2024, pp. 82-88, doi:10.22531/muglajsci.1351487.
Vancouver Zengin S. ANALYSIS OF A HYBRID CURRENT MODULATED DUAL ACTIVE BRIDGE PHOTOVOLTAIC DC/DC CONVERTER FOR UNIFORM IRRADIATION CONDITIONS. MJST. 2024;10(1):82-8.

5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license