Research Article
BibTex RIS Cite

PRODUCTION AND CHARACTERIZATION OF WALL TILE CERAMICS WITH THE ADDITION OF AMORPHOUS BORON

Year 2024, Volume: 10 Issue: 2, 98 - 105, 31.12.2024
https://doi.org/10.22531/muglajsci.1590295

Abstract

This study investigates the effects of amorphous boron (Fluka Boron) on the mechanical and thermal properties of ceramic wall tiles. Samples with boron concentrations of 0%, 1%, 3%, 5%, 7%, and 9% were sintered at 1000°C. Results showed that moderate amorphous boron additions (3%–5%) significantly improved bulk density and compressive strength due to enhanced densification and reduced porosity. These effects are attributed to boron's fluxing action, which promotes particle bonding during sintering. Amorphous boron additions of up to 5% were observed to enhance mechanical properties and thermal conductivity, with optimal performance at this concentration. However, amorphous boron levels exceeding 5% led to diminished mechanical strength and thermal conductivity due to the formation of a glassy phase and structural heterogeneity, despite reduced apparent porosity. This study on wall tile ceramics highlights the critical role of amorphous boron concentration in balancing densification, phase composition, and microstructure to enhance compressive strength and thermal conductivity performance. By highlighting the interplay between boron content and material performance, the research contributes valuable knowledge toward the development of sustainable, high-performance ceramic materials.

Project Number

1732378022535

References

  • U. Wangrakdiskul, T. Poommong, and P. Tubtimkeaw, “Enhancement Bending Strength of Non Fired Wall Tiles by Recovering Sand-Wastes By-Products from Kaolin Beneficiation Process,” Key Eng. Mater., 877, 123–130, 2021.
  • H. A. El Nouhy, “Assessment of some locally produced Egyptian ceramic wall tiles,” HBRC J., 9, 3, 201–209, 2013.
  • J. Martín-Márquez, J. M. Rincón, and M. Romero, “Effect of firing temperature on sintering of porcelain stoneware tiles,” Ceram. Int., 34, 8, 1867–1873, 2008.
  • S. J. G. Sousa and J. N. F. Holanda, “Characterization of non-calcareous ‘thin’ red clay from south-eastern Brazil: applicability in wall tile manufacture,” Cerâmica, 58, 345, 29–35, 2012.
  • E. H. Dagnew, “Alternative resource of incineration bottom ash for ceramic tile production,” Int. J. Ceram. Eng. Sci., 4, 4, 281–285, 2022.
  • U. Wangrakdiskul and R. Neamlut, “Reutilizing Sediment Soil Wastes from Water Supply Treatment Process as Replacement Materials of Non-Fired Wall Tiles,” Mater. Sci. Forum, 917, 303–310, 2018.
  • Q. An, W. A. Goddard, H. Xiao, and T. Cheng, “Deformation Induced Solid–Solid Phase Transitions in Gamma Boron,” Chem. Mater., 26, 14, 4289–4298, 2014.
  • A. K. Suri, C. Subramanian, J. K. Sonber, and T. S. R. C. Murthy, “Synthesis and consolidation of boron carbide: a review,” Int. Mater. Rev., 55, 1, 4–40, 2010.
  • G. Gouget et al., “Liquid-Phase Synthesis, Sintering, and Transport Properties of Nanoparticle-Based Boron-Rich Composites,” Chem. Mater., 33, 6, 2099–2109, 2021.
  • İ. Uslu, E. Çınar, S. Koçyiğit, A. Aytimur, and A. Akdemir, “Fabrication and characterisation of boron doped barium stabilised bismuth cobalt oxide nanocrystalline ceramic composite,” Adv. Appl. Ceram., 112, 6, 336-340, 2013.
  • H. Zhang, “Preparatıon and ferroelectrıc propertıes of strontıum-doped hydroxyapatıte ceramıcs,” Ceram. - Silikaty, 182–188, 2023.
  • V. I. Kushnirenko, I. V. Markevich, and A. V. Rusavsky, “Influence of boric acid as a flux on the properties of ZnO ceramics,” Radiat. Meas., 45, 3–6, 468–471, 2010.
  • D. Kozień et al., “Effect of Additives on the Reactive Sintering of Ti–B 4 C Composites Consolidated by Hot Pressing and Pressureless Sintering,” Adv. Eng. Mater., 24, 9, 2022.
  • H. J. Brown‐Shaklee, W. G. Fahrenholtz, and G. E. Hilmas, “Densification Behavior and Thermal Properties of Hafnium Diboride with the Addition of Boron Carbides,” J. Am. Ceram. Soc., 95, 6, 2035–2043, 2012.
  • Q. Xia, S. Sun, J. Ye, C. Zhang, and H. Ru, “Continuous SiC Skeleton-Reinforced Reaction-Bonded Boron Carbide Composites with High Flexural Strength,” Materials (Basel)., 16, 14, p. 5153, 2023.
  • S. Gao et al., “An economic and environment friendly way of recycling boron carbide waste to prepare B 4 C/Al composite ceramic,” Int. J. Appl. Ceram. Technol., 16, 3, 1032–1040, 2019.
  • M. Schmidt et al., “Molecular‐Level Processing of Si‐(B)‐C Materials with Tailored Nano/Microstructures,” Chem. – A Eur. J., 23, 67, 17103–17117, 2017.
  • H. BİÇER, “Reactive Sintering of Boron Carbide Based Ceramics by SPS,” J. Mater. Mechatronics A, 3, 1, 129–136, 2022.
  • J. L. Wang, Y. Z. Gou, W. R. Ren, K. Jian, and H. Wang, “Boron Carbide Hollow Microspheres Prepared by Polymer Derived Method,” Key Eng. Mater., 726, 159–163, 2017.
  • H. Lee, H. M. Lee, and D. K. Kim, “AC Impedance Spectroscopy of CaF2-doped AlN Ceramics,” J. Am. Ceram. Soc., 97, 3, 805–810, 2014.
  • V. N. Kazakova and E. G. Grigoryev, “Spark Plasma Sintering of Boron Carbide Powder,” KnE Mater. Sci., 4, 1, p. 548, 2018.
  • X. G. Deng et al., “Effects of firing temperature on the microstructures and properties of porous mullite ceramics prepared by foam-gelcasting,” Adv. Appl. Ceram., 115, 4, 204–209, 2016.
  • X. Wang, W. Guo, Y. Kan, and G. Zhang, “Hot‐Pressed ZrB 2 Ceramics With Composite Additives of Zr and B 4 C,” Adv. Eng. Mater., 12, 9, 893–898, 2010.
  • E. Padovano, C. Badini, S. Biamino, M. Pavese, W. S. Yang, and P. Fino, “Pressureless sintering of ZrB 2 –SiC composite laminates using boron and carbon as sintering aids,” Adv. Appl. Ceram., 112, 8, 478–486, 2013.

AMORF BOR KATKILI DUVAR KAROSU SERAMİKLERİNİN ÜRETİMİ VE KARAKTERİZASYONU

Year 2024, Volume: 10 Issue: 2, 98 - 105, 31.12.2024
https://doi.org/10.22531/muglajsci.1590295

Abstract

Bu çalışma, amorf borun (Fluka Boron) seramik duvar karolarının mekanik ve termal özellikleri üzerindeki etkilerini araştırmaktadır. Bor konsantrasyonları %0, %1, %3, %5, %7 ve %9 olan numuneler 1000°C'de sinterlenmiştir. Sonuçlar, orta düzeyde amorf bor ilavelerinin (%3-%5), artan yoğunlaşma ve azalan gözeneklilik nedeniyle yığın yoğunluğunu ve basınç dayanımını önemli ölçüde artırdığını göstermiştir. Bu etkiler, borun sinterleme sırasında partikül bağlanmasını teşvik eden akışkanlaştırma etkisine bağlanmaktadır. %5'e kadar amorf bor ilavelerinin mekanik özellikleri ve termal iletkenliği artırdığı ve bu konsantrasyonda optimum performans gösterdiği görülmüştür. Bununla birlikte, %5'i aşan amorf bor seviyeleri, görünür gözenekliliğin azalmasına rağmen camsı faz oluşumu ve yapısal heterojenlik nedeniyle mekanik mukavemet ve termal iletkenliğin azalmasına yol açmıştır. Duvar karosu seramikleri üzerine yapılan bu çalışma, basınç dayanımı ve termal iletkenlik performansını artırmak için yoğunlaştırma, faz bileşimi ve mikro yapıyı dengelemede amorf bor konsantrasyonunun kritik rolünü vurgulamaktadır. Bor içeriği ve malzeme performansı arasındaki etkileşimi vurgulayarak, araştırma sürdürülebilir, yüksek performanslı seramik malzemelerin geliştirilmesine yönelik değerli bilgilere katkıda bulunmaktadır.

Project Number

1732378022535

References

  • U. Wangrakdiskul, T. Poommong, and P. Tubtimkeaw, “Enhancement Bending Strength of Non Fired Wall Tiles by Recovering Sand-Wastes By-Products from Kaolin Beneficiation Process,” Key Eng. Mater., 877, 123–130, 2021.
  • H. A. El Nouhy, “Assessment of some locally produced Egyptian ceramic wall tiles,” HBRC J., 9, 3, 201–209, 2013.
  • J. Martín-Márquez, J. M. Rincón, and M. Romero, “Effect of firing temperature on sintering of porcelain stoneware tiles,” Ceram. Int., 34, 8, 1867–1873, 2008.
  • S. J. G. Sousa and J. N. F. Holanda, “Characterization of non-calcareous ‘thin’ red clay from south-eastern Brazil: applicability in wall tile manufacture,” Cerâmica, 58, 345, 29–35, 2012.
  • E. H. Dagnew, “Alternative resource of incineration bottom ash for ceramic tile production,” Int. J. Ceram. Eng. Sci., 4, 4, 281–285, 2022.
  • U. Wangrakdiskul and R. Neamlut, “Reutilizing Sediment Soil Wastes from Water Supply Treatment Process as Replacement Materials of Non-Fired Wall Tiles,” Mater. Sci. Forum, 917, 303–310, 2018.
  • Q. An, W. A. Goddard, H. Xiao, and T. Cheng, “Deformation Induced Solid–Solid Phase Transitions in Gamma Boron,” Chem. Mater., 26, 14, 4289–4298, 2014.
  • A. K. Suri, C. Subramanian, J. K. Sonber, and T. S. R. C. Murthy, “Synthesis and consolidation of boron carbide: a review,” Int. Mater. Rev., 55, 1, 4–40, 2010.
  • G. Gouget et al., “Liquid-Phase Synthesis, Sintering, and Transport Properties of Nanoparticle-Based Boron-Rich Composites,” Chem. Mater., 33, 6, 2099–2109, 2021.
  • İ. Uslu, E. Çınar, S. Koçyiğit, A. Aytimur, and A. Akdemir, “Fabrication and characterisation of boron doped barium stabilised bismuth cobalt oxide nanocrystalline ceramic composite,” Adv. Appl. Ceram., 112, 6, 336-340, 2013.
  • H. Zhang, “Preparatıon and ferroelectrıc propertıes of strontıum-doped hydroxyapatıte ceramıcs,” Ceram. - Silikaty, 182–188, 2023.
  • V. I. Kushnirenko, I. V. Markevich, and A. V. Rusavsky, “Influence of boric acid as a flux on the properties of ZnO ceramics,” Radiat. Meas., 45, 3–6, 468–471, 2010.
  • D. Kozień et al., “Effect of Additives on the Reactive Sintering of Ti–B 4 C Composites Consolidated by Hot Pressing and Pressureless Sintering,” Adv. Eng. Mater., 24, 9, 2022.
  • H. J. Brown‐Shaklee, W. G. Fahrenholtz, and G. E. Hilmas, “Densification Behavior and Thermal Properties of Hafnium Diboride with the Addition of Boron Carbides,” J. Am. Ceram. Soc., 95, 6, 2035–2043, 2012.
  • Q. Xia, S. Sun, J. Ye, C. Zhang, and H. Ru, “Continuous SiC Skeleton-Reinforced Reaction-Bonded Boron Carbide Composites with High Flexural Strength,” Materials (Basel)., 16, 14, p. 5153, 2023.
  • S. Gao et al., “An economic and environment friendly way of recycling boron carbide waste to prepare B 4 C/Al composite ceramic,” Int. J. Appl. Ceram. Technol., 16, 3, 1032–1040, 2019.
  • M. Schmidt et al., “Molecular‐Level Processing of Si‐(B)‐C Materials with Tailored Nano/Microstructures,” Chem. – A Eur. J., 23, 67, 17103–17117, 2017.
  • H. BİÇER, “Reactive Sintering of Boron Carbide Based Ceramics by SPS,” J. Mater. Mechatronics A, 3, 1, 129–136, 2022.
  • J. L. Wang, Y. Z. Gou, W. R. Ren, K. Jian, and H. Wang, “Boron Carbide Hollow Microspheres Prepared by Polymer Derived Method,” Key Eng. Mater., 726, 159–163, 2017.
  • H. Lee, H. M. Lee, and D. K. Kim, “AC Impedance Spectroscopy of CaF2-doped AlN Ceramics,” J. Am. Ceram. Soc., 97, 3, 805–810, 2014.
  • V. N. Kazakova and E. G. Grigoryev, “Spark Plasma Sintering of Boron Carbide Powder,” KnE Mater. Sci., 4, 1, p. 548, 2018.
  • X. G. Deng et al., “Effects of firing temperature on the microstructures and properties of porous mullite ceramics prepared by foam-gelcasting,” Adv. Appl. Ceram., 115, 4, 204–209, 2016.
  • X. Wang, W. Guo, Y. Kan, and G. Zhang, “Hot‐Pressed ZrB 2 Ceramics With Composite Additives of Zr and B 4 C,” Adv. Eng. Mater., 12, 9, 893–898, 2010.
  • E. Padovano, C. Badini, S. Biamino, M. Pavese, W. S. Yang, and P. Fino, “Pressureless sintering of ZrB 2 –SiC composite laminates using boron and carbon as sintering aids,” Adv. Appl. Ceram., 112, 8, 478–486, 2013.
There are 24 citations in total.

Details

Primary Language English
Subjects Materials Science and Technologies, Material Characterization, Ceramics in Materials Engineering, Powder Metallurgy
Journal Section Articles
Authors

Saadet Güler 0000-0001-9656-342X

Project Number 1732378022535
Publication Date December 31, 2024
Submission Date November 23, 2024
Acceptance Date December 16, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Güler, S. (2024). PRODUCTION AND CHARACTERIZATION OF WALL TILE CERAMICS WITH THE ADDITION OF AMORPHOUS BORON. Mugla Journal of Science and Technology, 10(2), 98-105. https://doi.org/10.22531/muglajsci.1590295
AMA Güler S. PRODUCTION AND CHARACTERIZATION OF WALL TILE CERAMICS WITH THE ADDITION OF AMORPHOUS BORON. MJST. December 2024;10(2):98-105. doi:10.22531/muglajsci.1590295
Chicago Güler, Saadet. “PRODUCTION AND CHARACTERIZATION OF WALL TILE CERAMICS WITH THE ADDITION OF AMORPHOUS BORON”. Mugla Journal of Science and Technology 10, no. 2 (December 2024): 98-105. https://doi.org/10.22531/muglajsci.1590295.
EndNote Güler S (December 1, 2024) PRODUCTION AND CHARACTERIZATION OF WALL TILE CERAMICS WITH THE ADDITION OF AMORPHOUS BORON. Mugla Journal of Science and Technology 10 2 98–105.
IEEE S. Güler, “PRODUCTION AND CHARACTERIZATION OF WALL TILE CERAMICS WITH THE ADDITION OF AMORPHOUS BORON”, MJST, vol. 10, no. 2, pp. 98–105, 2024, doi: 10.22531/muglajsci.1590295.
ISNAD Güler, Saadet. “PRODUCTION AND CHARACTERIZATION OF WALL TILE CERAMICS WITH THE ADDITION OF AMORPHOUS BORON”. Mugla Journal of Science and Technology 10/2 (December 2024), 98-105. https://doi.org/10.22531/muglajsci.1590295.
JAMA Güler S. PRODUCTION AND CHARACTERIZATION OF WALL TILE CERAMICS WITH THE ADDITION OF AMORPHOUS BORON. MJST. 2024;10:98–105.
MLA Güler, Saadet. “PRODUCTION AND CHARACTERIZATION OF WALL TILE CERAMICS WITH THE ADDITION OF AMORPHOUS BORON”. Mugla Journal of Science and Technology, vol. 10, no. 2, 2024, pp. 98-105, doi:10.22531/muglajsci.1590295.
Vancouver Güler S. PRODUCTION AND CHARACTERIZATION OF WALL TILE CERAMICS WITH THE ADDITION OF AMORPHOUS BORON. MJST. 2024;10(2):98-105.

5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license