Research Article
BibTex RIS Cite

AĞIZ KANSERİ TESPİTİNİN OPTİMİZE EDİLMESİ: GELİŞTİRİLMİŞ SINIFLANDIRMA DOĞRULUĞU İÇİN RESNET50'NİN CLAHE İLE GELİŞTİRİLMESİ

Year 2025, Volume: 11 Issue: 1, 1 - 10, 30.06.2025
https://doi.org/10.22531/muglajsci.1565902

Abstract

Özenle açıklanmış yüksek çözünürlüklü histopatolojik görüntülerden oluşan Histopatolojik Ağız Kanseri Tespit Veri Seti, ağız kanserinin erken teşhisini ve sınıflandırılmasını ilerletmek için önemli bir kaynaktır. "Normal" ve "Ağız Skuamöz Hücreli Karsinom (OSCC)" sınıflarına ayrılan veri seti, özellikle kötü huylu ve kötü huylu olmayan doku örnekleri arasında ayrım yapmak üzere tasarlanmış Evrişimsel Sinir Ağları (CNN'ler) olmak üzere sofistike derin öğrenme modellerinin geliştirilmesi ve değerlendirilmesinin temelini oluşturur. Bu çalışmada, ResNet50 derin öğrenme mimarisinin etkinliği, ağız kanserinin histopatolojik görüntülerini sınıflandırma yeteneği açısından titizlikle değerlendirildi. İki metodoloji araştırıldı: başlangıçta, ResNet50 bağımsız bir sınıflandırıcı olarak uygulandı ve %97,43'lük bir Hassasiyet, Geri Çağırma, F1 Puanı ve Doğruluk ile birlikte %94,86'lık bir MCC ve %97,43'lük bir AUC elde edildi. Daha sonra, çalışma ön işleme aşaması sırasında, özellikle tıbbi görüntüleme bağlamlarında görüntü kontrastını uyarlamalı olarak geliştirmek için iyi bilinen bir teknik olan Kontrast Sınırlı Uyarlamalı Histogram Eşitlemeyi (CLAHE) dahil etti. CLAHE'nin entegrasyonu, modelin %98,37 Hassasiyet, %98,33 Geri Çağırma, %98,33 F1 Puanı, %98,33 Doğruluk, %96,70 MCC ve %98,37 AUC elde etmesiyle performansta belirgin bir iyileşme sağladı. Bu sonuçlar CLAHE'nin önemini vurguladı. Ağız kanserinin erken teşhisi için çok faydalıdır.

References

  • He, S. and Chakraborty, R., "Proliferation and apoptosis pathways and factors in oral squamous cell carcinoma", Int. J. Mol. Sci., 23, 1562, 2022.
  • Sung, H. et al., "Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries", CA Cancer J. Clin., 71, 209-249, 2021.
  • Jemal, A. et al., "Annual report to the nation on the status of cancer, featuring survival", JNCI-J. Natl. Cancer Inst., 109, 1975-2014, 2017.
  • Choi, S. and Myers, J. N., "Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy", J. Dent. Res., 87, 14-32, 2008.
  • Ayaz, B. et al., "A clinico-pathological study of oral cancers", Biomedica, 27, 29-32, 2011.
  • Neville, B. W. and Day, T. A., "Oral cancer and precancerous lesions", CA-Cancer J. Clin., 52, 195-215, 2002.
  • Dost, F. et al., "A retrospective analysis of clinical features of oral malignant and potentially malignant disorders with and without oral epithelial dysplasia", Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 116, 725-733, 2013.
  • Aubreville, M. et al., "Automatic classification of cancerous tissue in laser endo microscopy images of the oral cavity using deep learning", Sci. Rep., 7, 11979, 2017.
  • Mohd, F., Noor, N. M., Abu Bakar, Z., and Rajion, Z. A., "Analysis of Oral Cancer Prediction using Features Selection with Machine Learning", The 7th International Conference on Information Technology, 2015, 12-15.
  • Alhazmi, A. et al., "Application of artificial intelligence and machine learning for prediction of oral cancer risk", J. Oral Pathol. Med., 50, 444-450, 2021.
  • Chu, C. S. et al., "Machine learning and treatment outcome prediction for oral cancer", J. Oral Pathol. Med., 49, 977-985, 2020.
  • Welikala, R. A. et al., "Automated Detection and Classification of Oral Lesions Using Deep Learning for Early Detection of Oral Cancer", IEEE Access, 8, 132677-132693, 2020.
  • Shavlokhova, V. et al., "Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility Study", J. Clin. Med., 10, 5326, 2021.
  • Alkhadar, H. et al., "Comparison of machine learning algorithms for the prediction of five-year survival in oral squamous cell carcinoma", J. Oral Pathol. Med., 50, 378-384, 2021.
  • Fati, S. M., Senan, E. M., and Javed, Y., "Early Diagnosis of Oral Squamous Cell Carcinoma Based on Histopathological Images Using Deep and Hybrid Learning Approaches", Diagnostics, 12, 1899, 2022.
  • Gupta, R. K., Manhas, J., and Kour, M., "Hybrid Feature Extraction Based Ensemble Classification Model to Diagnose Oral Carcinoma Using Histopathological Images", Journal of Scientific Research, 66, 219-226, 2022.
  • Deif, M. A. et al., "Diagnosis of Oral Squamous Cell Carcinoma Using Deep Neural Networks and Binary Particle Swarm Optimization on Histopathological Images: An AIoMT Approach", Computational Intelligence and Neuroscience, 2022, 1-13.
  • Rahman, A. et al., "Histopathologic Oral Cancer Prediction Using Oral Squamous Cell Carcinoma Biopsy Empowered with Transfer Learning", Sensors, 22, 3833, 2022.
  • Kourou, K. et al., "Machine learning applications in cancer prognosis and prediction", Computational and Structural Biotechnology Journal, 13, 8-17, 2015.
  • "Dataset", Kaggle, 2024, [Online]. Available: https://www.kaggle.com/ashenafifasilkebede/dataset?select=val. [Accessed: 15-Jun-2024].
  • Zuiderveld, K., "Graphics gems iv", Academic Press Professional, 1994, 474-485.
  • Koonsanit, K. et al., "Image enhancement on digital x-ray images using N-CLAHE", 10th Biomedical Engineering International Conference (BMEiCON), 2017, 1-4.

OPTIMIZING ORAL CANCER DETECTION: ENHANCING RESNET50 WITH CLAHE FOR IMPROVED CLASSIFICATION ACCURACY

Year 2025, Volume: 11 Issue: 1, 1 - 10, 30.06.2025
https://doi.org/10.22531/muglajsci.1565902

Abstract

The Histopathologic Oral Cancer Detection Dataset, which consists of meticulously annotated high-resolution histopathological images, is an essential resource for advancing the early diagnosis and classification of oral cancer. The dataset, categorized into "Normal" and "Oral Squamous Cell Carcinoma (OSCC)" classes, underpins the development and evaluation of sophisticated deep learning models, particularly Convolutional Neural Networks (CNNs), designed to distinguish between malignant and non-malignant tissue samples. In this study, the efficacy of the ResNet50 deep learning architecture was rigorously evaluated for its ability to classify histopathological images of oral cancer. Two methodologies were investigated: initially, ResNet50 was applied as an independent classifier, achieving a Precision, Recall, F1 Score, and Accuracy of 97.43%, alongside an MCC of 94.86 and an AUC of 97.43%. Subsequently, the study incorporated Contrast Limited Adaptive Histogram Equalization (CLAHE) during the pre-processing phase, a technique well-regarded for enhancing image contrast adaptively, particularly in medical imaging contexts. The integration of CLAHE resulted in a marked improvement in performance, with the model attaining a Precision of 98.37%, Recall of 98.33%, F1 Score of 98.33%, Accuracy of 98.33%, MCC of 96.70%, and AUC of 98.37%. These results emphasized the importance of CLAHE. It is very useful for early diagnosis of oral cancer.

References

  • He, S. and Chakraborty, R., "Proliferation and apoptosis pathways and factors in oral squamous cell carcinoma", Int. J. Mol. Sci., 23, 1562, 2022.
  • Sung, H. et al., "Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries", CA Cancer J. Clin., 71, 209-249, 2021.
  • Jemal, A. et al., "Annual report to the nation on the status of cancer, featuring survival", JNCI-J. Natl. Cancer Inst., 109, 1975-2014, 2017.
  • Choi, S. and Myers, J. N., "Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy", J. Dent. Res., 87, 14-32, 2008.
  • Ayaz, B. et al., "A clinico-pathological study of oral cancers", Biomedica, 27, 29-32, 2011.
  • Neville, B. W. and Day, T. A., "Oral cancer and precancerous lesions", CA-Cancer J. Clin., 52, 195-215, 2002.
  • Dost, F. et al., "A retrospective analysis of clinical features of oral malignant and potentially malignant disorders with and without oral epithelial dysplasia", Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 116, 725-733, 2013.
  • Aubreville, M. et al., "Automatic classification of cancerous tissue in laser endo microscopy images of the oral cavity using deep learning", Sci. Rep., 7, 11979, 2017.
  • Mohd, F., Noor, N. M., Abu Bakar, Z., and Rajion, Z. A., "Analysis of Oral Cancer Prediction using Features Selection with Machine Learning", The 7th International Conference on Information Technology, 2015, 12-15.
  • Alhazmi, A. et al., "Application of artificial intelligence and machine learning for prediction of oral cancer risk", J. Oral Pathol. Med., 50, 444-450, 2021.
  • Chu, C. S. et al., "Machine learning and treatment outcome prediction for oral cancer", J. Oral Pathol. Med., 49, 977-985, 2020.
  • Welikala, R. A. et al., "Automated Detection and Classification of Oral Lesions Using Deep Learning for Early Detection of Oral Cancer", IEEE Access, 8, 132677-132693, 2020.
  • Shavlokhova, V. et al., "Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility Study", J. Clin. Med., 10, 5326, 2021.
  • Alkhadar, H. et al., "Comparison of machine learning algorithms for the prediction of five-year survival in oral squamous cell carcinoma", J. Oral Pathol. Med., 50, 378-384, 2021.
  • Fati, S. M., Senan, E. M., and Javed, Y., "Early Diagnosis of Oral Squamous Cell Carcinoma Based on Histopathological Images Using Deep and Hybrid Learning Approaches", Diagnostics, 12, 1899, 2022.
  • Gupta, R. K., Manhas, J., and Kour, M., "Hybrid Feature Extraction Based Ensemble Classification Model to Diagnose Oral Carcinoma Using Histopathological Images", Journal of Scientific Research, 66, 219-226, 2022.
  • Deif, M. A. et al., "Diagnosis of Oral Squamous Cell Carcinoma Using Deep Neural Networks and Binary Particle Swarm Optimization on Histopathological Images: An AIoMT Approach", Computational Intelligence and Neuroscience, 2022, 1-13.
  • Rahman, A. et al., "Histopathologic Oral Cancer Prediction Using Oral Squamous Cell Carcinoma Biopsy Empowered with Transfer Learning", Sensors, 22, 3833, 2022.
  • Kourou, K. et al., "Machine learning applications in cancer prognosis and prediction", Computational and Structural Biotechnology Journal, 13, 8-17, 2015.
  • "Dataset", Kaggle, 2024, [Online]. Available: https://www.kaggle.com/ashenafifasilkebede/dataset?select=val. [Accessed: 15-Jun-2024].
  • Zuiderveld, K., "Graphics gems iv", Academic Press Professional, 1994, 474-485.
  • Koonsanit, K. et al., "Image enhancement on digital x-ray images using N-CLAHE", 10th Biomedical Engineering International Conference (BMEiCON), 2017, 1-4.
There are 22 citations in total.

Details

Primary Language English
Subjects Biomedical Imaging, Quantum Engineering Systems (Incl. Computing and Communications)
Journal Section Articles
Authors

Nilgün Şengöz 0000-0001-5651-8173

Gül Karaman 0009-0004-0443-2895

Mert Samet Çeliker 0009-0005-3327-5064

Publication Date June 30, 2025
Submission Date October 12, 2024
Acceptance Date March 10, 2025
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Şengöz, N., Karaman, G., & Çeliker, M. S. (2025). OPTIMIZING ORAL CANCER DETECTION: ENHANCING RESNET50 WITH CLAHE FOR IMPROVED CLASSIFICATION ACCURACY. Mugla Journal of Science and Technology, 11(1), 1-10. https://doi.org/10.22531/muglajsci.1565902
AMA Şengöz N, Karaman G, Çeliker MS. OPTIMIZING ORAL CANCER DETECTION: ENHANCING RESNET50 WITH CLAHE FOR IMPROVED CLASSIFICATION ACCURACY. Mugla Journal of Science and Technology. June 2025;11(1):1-10. doi:10.22531/muglajsci.1565902
Chicago Şengöz, Nilgün, Gül Karaman, and Mert Samet Çeliker. “OPTIMIZING ORAL CANCER DETECTION: ENHANCING RESNET50 WITH CLAHE FOR IMPROVED CLASSIFICATION ACCURACY”. Mugla Journal of Science and Technology 11, no. 1 (June 2025): 1-10. https://doi.org/10.22531/muglajsci.1565902.
EndNote Şengöz N, Karaman G, Çeliker MS (June 1, 2025) OPTIMIZING ORAL CANCER DETECTION: ENHANCING RESNET50 WITH CLAHE FOR IMPROVED CLASSIFICATION ACCURACY. Mugla Journal of Science and Technology 11 1 1–10.
IEEE N. Şengöz, G. Karaman, and M. S. Çeliker, “OPTIMIZING ORAL CANCER DETECTION: ENHANCING RESNET50 WITH CLAHE FOR IMPROVED CLASSIFICATION ACCURACY”, Mugla Journal of Science and Technology, vol. 11, no. 1, pp. 1–10, 2025, doi: 10.22531/muglajsci.1565902.
ISNAD Şengöz, Nilgün et al. “OPTIMIZING ORAL CANCER DETECTION: ENHANCING RESNET50 WITH CLAHE FOR IMPROVED CLASSIFICATION ACCURACY”. Mugla Journal of Science and Technology 11/1 (June2025), 1-10. https://doi.org/10.22531/muglajsci.1565902.
JAMA Şengöz N, Karaman G, Çeliker MS. OPTIMIZING ORAL CANCER DETECTION: ENHANCING RESNET50 WITH CLAHE FOR IMPROVED CLASSIFICATION ACCURACY. Mugla Journal of Science and Technology. 2025;11:1–10.
MLA Şengöz, Nilgün et al. “OPTIMIZING ORAL CANCER DETECTION: ENHANCING RESNET50 WITH CLAHE FOR IMPROVED CLASSIFICATION ACCURACY”. Mugla Journal of Science and Technology, vol. 11, no. 1, 2025, pp. 1-10, doi:10.22531/muglajsci.1565902.
Vancouver Şengöz N, Karaman G, Çeliker MS. OPTIMIZING ORAL CANCER DETECTION: ENHANCING RESNET50 WITH CLAHE FOR IMPROVED CLASSIFICATION ACCURACY. Mugla Journal of Science and Technology. 2025;11(1):1-10.

5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license