A company should minimize the customer churn and make a well analysis thereof in order to prevent their existing customers from choosing a rival company. In the telecommunication market, one of the markets where a fierce competition is underway, it becomes more and more important to prevent the loss of customers and attain the customer loyalty, especially due to free number porting applied in the market. It is obvious that the loss appraisal method would not be sufficient by itself, considering that the loss of customers creates a knock-on effect. Therefore, the analysis on the customer network has the same level of importance within the process after the appraisal. This is because, it is well known in the modern business approach that a customer would contribute a great value to a company due to his/her strong position in the network, even he/she does not bring the highest level of profit. This paper is intended to estimate the loss of customers in the Turkish telecommunication market with the help of the Artificial Neural Networks (ANN) and examine the positions and effects on the network of the customers for whom there is a risk of loss, by analyzing the customer communication network with the help of the Social Network Analysis (SNA)
Artificial Neural Networks Social Network Analysis Customer Churn Management Telecommunication Market
Firmalar, mevcut müşterilerinin rakip bir firmaya yönlenmelerini engellemek için müşteri kayıplarını en aza indirmeli ve müşteri kayıplarını iyi analiz etmelidirler. Rekabetin en yoğun yaşandığı sektörlerden biri olan telekomünikasyon piyasasında, numara taşıma serbestliği ile de müşteri kayıplarını engellemek ve müşteri bağımlılığını sağlamak giderek önem kazanmaktadır. Müşteri kaybı olayının zincirleme bir etki yarattığı göz önünde bulundurulduğunda, kayıp tahmin yönetiminin kayıpları önlemede tek başına yeterli olamayacağı açıktır. Bu nedenle tahminden sonraki süreçte, müşteri ağının analizi de aynı derecede önemlidir. Çünkü modern işletme yaklaşımlarında bir müşterinin, en yüksek kârı getirmediği halde, ağdaki güçlü konumundan dolayı firmaya daha yüksek değer katabileceği bilinmektedir. Makalenin amacı, Türk telekomünikasyon piyasasında müşteri kaybını Yapay Sinir Ağları (YSA) ile tahmin etmek ve müşteri iletişim ağını Sosyal Ağ Analizi (SAA) yardımıyla analiz ederek kaybedilme riski taşıyan müşterilerin ağdaki konumlarını ve etkilerini incelemektir.
Primary Language | Turkish |
---|---|
Journal Section | Makaleler |
Authors | |
Publication Date | March 18, 2015 |
Submission Date | March 18, 2015 |
Published in Issue | Year 2013 Volume: 34 Issue: 1 |
Bu web sitesi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.