Review Article
BibTex RIS Cite
Year 2022, Volume: 2 Issue: 2, 30 - 36, 06.12.2022

Abstract

References

  • 1. Raghu HV, Parkunan T, Kumar N. Application of Nanobiosensors for Food Safety Monitoring. Dasgupta N, Ranjan S and Lichtfouse E. eds. In: Environmental Nanotechnology. Cham: Springer International Publishing, 2020; pp. 93-129.
  • 2. Fracchiolla NS, Artuso S, Cortelezzi A. Biosensors in clinical practice: focus on oncohematology. Sensors 2013; 13(5): 6423-47.
  • 3. De Luna P, Mahshid SS, Das J, Luan B, Sargent EH, Kelley SO, Zhou R. High-curvature nanostructuring enhances probe display for biomolecular detection. Nano Lett 2017; 17(2): 1289-95.
  • 4. Purohit B, Vernekar PR, Shetti NP, Chandra P. Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sensors Int 2020; 1: 100040.
  • 5. Mathivanan S. Perspectives of Nano-Materials and Nanobiosensors in Food Safety and Agriculture. Krishnamoorthy K. eds. In: Novel Nanomaterials. UK: IntechOpen, 2021; pp. 197.
  • 6. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
  • 7. Jurado-Sanchez B, Moreno-Guzmán M, Perales-Rondon JV, Escarpa A. Nanobiosensors for food analysis. eds. In: Handbook of Food Nanotechnology. Elsevier, 2020; pp. 415-57.
  • 8. Malekzad H, Zangabad PS, Mirshekari H, Karimi M, Hamblin MR. Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev 2017; 6(3): 301-29.
  • 9. Banerjee A, Maity S, Mastrangelo CH. Nanotechnology for biosensors: A Review. arXiv 2021.
  • 10. Xu H, Suslick KS. Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 2010; 4(6): 3209-14.
  • 11. Wang N, Ga L, Jia M, Ai J. Synthesis of Fluorescent Copper Nanoparticles and Ultrasensitive Free Label Detection of Ag+. J Nanomater; 2019: 4089731.
  • 12. Naresh V, Lee N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021; 21(4): 1109.
  • 13. Bhargava R, Khan S, Ahmad N, Ansari MMN. Investigation of structural, optical and electrical properties of Co3O4 nanoparticles. AIP Conf Proc 2018; 1953(1): 030034.
  • 14. Amparo LR, Rovira MJF, Sanz MM, Gomez-Mascaraque LG, eds. Nanomaterials for food applications. Elsevier, 2018; 290-295.
  • 15. Ripoll C, Orte A, Paniza L, Ruedas-Rama MJ. A Quantum Dot-Based FLIM Glucose Nanosensor. Sensors 2019; 19(22): 4992.
  • 16. Morales MA, Halpern JM. Guide to Selecting a Biorecognition Element for Biosensors. Bioconjug Chem 2018; 29(10): 3231-39.
  • 17. Liu H, Ge J, Ma E, Yang L. 10 - Advanced biomaterials for biosensor and theranostics. Yang L, Bhaduri SB and Webster TJ. eds. In: Biomaterials in Translational Medicine. Academic Press, 2019; pp. 213-55.
  • 18. Zhang Y, Lai BS, Juhas M. Recent Advances in Aptamer Discovery and Applications. Molecules 2019; 24(5): 941.
  • 19. Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev 2010; 39(5): 1747-63.
  • 20. Chen C, Wang J. Optical biosensors: an exhaustive and comprehensive review. Analyst 2020; 145(5): 1605-28.
  • 21. Pohanka M. Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications. Materials (Basel) 2018; 11(3): 448.
  • 22. Ramanathan K, Danielsson B. Principles and applications of thermal biosensors. Biosens Bioelectron 2001; 16(6): 417-23.
  • 23. Zhao W, Brook MA, Li Y. Design of gold nanoparticle-based colorimetric biosensing assays. Chembiochem 2008; 9(15): 2363-71.
  • 24. Zhang R, Belwal T, Li L, Lin X, Xu Y, Luo Z. Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades. Compr Rev Food Sci 2020; 19(4): 1465-87.
  • 25. Prasad S. Nanobiosensors: the future for diagnosis of disease? Nanobiosens Dis Diagn 2014; 3: 1-10.
  • 26. Rinken T, eds. State of the Art in Biosensors: General Aspects. BoD–Books on Demand, 2013; p. 4345.
  • 27. Peltomaa R, Benito-Peña E, Gorris HH, Moreno-Bondi MC. Biosensing based on upconversion nanoparticles for food quality and safety applications. Analyst 2021; 146(1): 13-32.
  • 28. Szydłowska-Czerniak A, Tułodziecka A, Szłyk E. A silver nanoparticle-based method for determination of antioxidant capacity of rapeseed and its products. Analyst 2012; 137(16): 3750-59.
  • 29. Deng H, Wang B, Wu M, Deng B, Xie L, Guo Y. Rapidly colorimetric detection of caffeine in beverages by silver nanoparticle sensors coupled with magnetic molecularly imprinted polymeric microspheres. Int J Food Sci 2019; 54(1): 202-11.
  • 30. Li C, Yang Q, Wang X, Arabi M, Peng H, Li J, Xiong H, Chen L. Facile approach to the synthesis of molecularly imprinted ratiometric fluorescence nanosensor for the visual detection of folic acid. Food Chem 2020; 319: 126575.
  • 31. Neethirajan S, Jayas DS. Nanotechnology for the Food and Bioprocessing Industries. Food Bioproc Tech 2011; 4(1): 39-47.
  • 32. Zabala S, Castán J, Martínez C. Development of a time–temperature indicator (TTI) label by rotary printing technologies. Food Control 2015; 50: 57-64.
  • 33. Zhang L, Sun R, Yu H, Yu H, Xu G, Deng L, Qian J. A new method for matching gold nanoparticle-based time–temperature indicators with muffins without obtaining activation energy. J Food Sci 2020; 85(8): 2589-95.
  • 34. Aghaei Z, Ghorani B, Emadzadeh B, Kadkhodaee R, Tucker N. Protein-based halochromic electrospun nanosensor for monitoring trout fish freshness. Food Control 2020; 111: 107065.
  • 35. Mustafa F, Othman A, Andreescu S. Cerium oxide-based hypoxanthine biosensor for Fish spoilage monitoring. Sens Actuators B Chem 2021; 332: 129435.
  • 36. Maftoonazad N, Ramaswamy H. Design and testing of an electrospun nanofiber mat as a pH biosensor and monitor the pH associated quality in fresh date fruit (Rutab). Polym Test 2019; 75: 76-84.
  • 37. Zheng L, Cai G, Wang S, Liao M, Li Y, Lin J. A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosens Bioelectron 2019; 124-125: 143-49.
  • 38. Alvarez-Morezuelas A, Ortiz-Barredo A, Barandalla L, Ritter E, de Galarreta JIR. Estimation of Glucose Content in Raw Potatoes with a Biosensor as an Indicator of Acrylamide Level in Processed Potatoes. Potato Res 2021.
  • 39. Majumdar S, Thakur D, Chowdhury D. DNA Carbon-Nanodots based Electrochemical Biosensor for Detection of Mutagenic Nitrosamines. ACS Appl Bio Mater 2020; 3(3): 1796-803.
  • 40. Church J, Wang X, Calderon J, Lee WH, Cho HJ, Zhai L. A graphene-based nanosensor for in situ monitoring of polycyclic aromatic hydrocarbons (PAHs). J Nanosci Nanotechnol 2016; 16(2): 1620-23.
  • 41. Wang Y, Schill KM, Fry HC, Duncan TV. A Quantum Dot Nanobiosensor for Rapid Detection of Botulinum Neurotoxin Serotype E. ACS Sens 2020; 5(7): 2118-27.
  • 42. Bagheri pebdeni A, Hosseini M. Fast and selective whole cell detection of Staphylococcus aureus bacteria in food samples by paper based colorimetric nanobiosensor using peroxidase-like catalytic activity of DNA-Au/Pt bimetallic nanoclusters. Microchem J 2020; 159: 105475.
  • 43. Jin L, Li T, Yang T, Liang X, Wu B, Zou D, Hu L, Huang G, Zhang J. NMR rapid detection of Salmonella in milk based on ultra-small iron oxide nanobiosensor. Int Dairy J 2020; 110: 104807.
  • 44. Bhattacharya S, Jang J, Yang L, Akin D, Bashir R. BioMEMS and nanotechnology‐based approaches for rapid detection of biological entities. Journal of Rapid Methods & Automation in Microbiology 2007; 15(1): 1-32.
  • 45. Mustafa F, Andreescu S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Adv 2020; 10(33): 19309-36.
  • 46. Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS. Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron 2009; 25(1): 224-7.
  • 47. Rigo AA, Cezaro AMd, Muenchen DK, Martinazzo J, Brezolin AN, Hoehne L, Steffens J, Steffens C. Cantilever nanobiosensor based on the enzyme urease for detection of heavy metals. Braz J Chem Eng 2020; 36: 1429-37.
  • 48. Hassan MM, Li H, Ahmad W, Zareef M, Wang J, Xie S, Wang P, Ouyang Q, Wang S, Chen Q. Au@ Ag nanostructure based SERS substrate for simultaneous determination of pesticides residue in tea via solid phase extraction coupled multivariate calibration. Lwt 2019; 10: 290-97.
  • 49. Neethirajan S, Weng X, Tah A, Cordero JO, Ragavan KV. Nano-biosensor platforms for detecting food allergens – New trends. Sens Bio-Sens Res 2018; 18: 13-30.
  • 50. Weng X, Neethirajan S. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosens Bioelectron 2016; 85: 649-56.
  • 51. Speroni F, Elviri L, Careri M, Mangia A. Magnetic particles functionalized with PAMAM-dendrimers and antibodies: A new system for an ELISA method able to detect Ara h3/4 peanut allergen in foods. Anal Bioanal Chem 2010; 397(7): 3035-42.
  • 52. Zhang Y, Zhou D. Magnetic particle-based ultrasensitive biosensors for diagnostics. Expert Rev Mol Diagn 2012; 12(6): 565-71.

Using of nanobiosensors in determination of food safety and quality

Year 2022, Volume: 2 Issue: 2, 30 - 36, 06.12.2022

Abstract

Today, there is a growing demand for fast, reliable and cost-effective systems for the detection, monitoring and diagnosis of food ingredients as well as contaminants in food. Quantitative/qualitative analysis of foods is carried out using traditional analytical methods such as chromatographic and spectroscopic techniques. Despite their sensitivity and accuracy, these methods are challenging due to the multi-stage and complex sample preparation procedures, requiring specialized personnel and expensive instrumentation for analysis. In addition, their labor-intensive and time-consuming nature eliminates the possibility of on-site and high-frequency monitoring of the analytes. A wide variety of nanotechnology-based new nanobiosensors are being developed in order to eliminate the difficulties posed by these techniques. In this context, in the present study, nanomaterials used in the development of nanobiosensors for use in foods, their working principles and their use in foods were examined.

References

  • 1. Raghu HV, Parkunan T, Kumar N. Application of Nanobiosensors for Food Safety Monitoring. Dasgupta N, Ranjan S and Lichtfouse E. eds. In: Environmental Nanotechnology. Cham: Springer International Publishing, 2020; pp. 93-129.
  • 2. Fracchiolla NS, Artuso S, Cortelezzi A. Biosensors in clinical practice: focus on oncohematology. Sensors 2013; 13(5): 6423-47.
  • 3. De Luna P, Mahshid SS, Das J, Luan B, Sargent EH, Kelley SO, Zhou R. High-curvature nanostructuring enhances probe display for biomolecular detection. Nano Lett 2017; 17(2): 1289-95.
  • 4. Purohit B, Vernekar PR, Shetti NP, Chandra P. Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sensors Int 2020; 1: 100040.
  • 5. Mathivanan S. Perspectives of Nano-Materials and Nanobiosensors in Food Safety and Agriculture. Krishnamoorthy K. eds. In: Novel Nanomaterials. UK: IntechOpen, 2021; pp. 197.
  • 6. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
  • 7. Jurado-Sanchez B, Moreno-Guzmán M, Perales-Rondon JV, Escarpa A. Nanobiosensors for food analysis. eds. In: Handbook of Food Nanotechnology. Elsevier, 2020; pp. 415-57.
  • 8. Malekzad H, Zangabad PS, Mirshekari H, Karimi M, Hamblin MR. Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev 2017; 6(3): 301-29.
  • 9. Banerjee A, Maity S, Mastrangelo CH. Nanotechnology for biosensors: A Review. arXiv 2021.
  • 10. Xu H, Suslick KS. Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 2010; 4(6): 3209-14.
  • 11. Wang N, Ga L, Jia M, Ai J. Synthesis of Fluorescent Copper Nanoparticles and Ultrasensitive Free Label Detection of Ag+. J Nanomater; 2019: 4089731.
  • 12. Naresh V, Lee N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021; 21(4): 1109.
  • 13. Bhargava R, Khan S, Ahmad N, Ansari MMN. Investigation of structural, optical and electrical properties of Co3O4 nanoparticles. AIP Conf Proc 2018; 1953(1): 030034.
  • 14. Amparo LR, Rovira MJF, Sanz MM, Gomez-Mascaraque LG, eds. Nanomaterials for food applications. Elsevier, 2018; 290-295.
  • 15. Ripoll C, Orte A, Paniza L, Ruedas-Rama MJ. A Quantum Dot-Based FLIM Glucose Nanosensor. Sensors 2019; 19(22): 4992.
  • 16. Morales MA, Halpern JM. Guide to Selecting a Biorecognition Element for Biosensors. Bioconjug Chem 2018; 29(10): 3231-39.
  • 17. Liu H, Ge J, Ma E, Yang L. 10 - Advanced biomaterials for biosensor and theranostics. Yang L, Bhaduri SB and Webster TJ. eds. In: Biomaterials in Translational Medicine. Academic Press, 2019; pp. 213-55.
  • 18. Zhang Y, Lai BS, Juhas M. Recent Advances in Aptamer Discovery and Applications. Molecules 2019; 24(5): 941.
  • 19. Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev 2010; 39(5): 1747-63.
  • 20. Chen C, Wang J. Optical biosensors: an exhaustive and comprehensive review. Analyst 2020; 145(5): 1605-28.
  • 21. Pohanka M. Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications. Materials (Basel) 2018; 11(3): 448.
  • 22. Ramanathan K, Danielsson B. Principles and applications of thermal biosensors. Biosens Bioelectron 2001; 16(6): 417-23.
  • 23. Zhao W, Brook MA, Li Y. Design of gold nanoparticle-based colorimetric biosensing assays. Chembiochem 2008; 9(15): 2363-71.
  • 24. Zhang R, Belwal T, Li L, Lin X, Xu Y, Luo Z. Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades. Compr Rev Food Sci 2020; 19(4): 1465-87.
  • 25. Prasad S. Nanobiosensors: the future for diagnosis of disease? Nanobiosens Dis Diagn 2014; 3: 1-10.
  • 26. Rinken T, eds. State of the Art in Biosensors: General Aspects. BoD–Books on Demand, 2013; p. 4345.
  • 27. Peltomaa R, Benito-Peña E, Gorris HH, Moreno-Bondi MC. Biosensing based on upconversion nanoparticles for food quality and safety applications. Analyst 2021; 146(1): 13-32.
  • 28. Szydłowska-Czerniak A, Tułodziecka A, Szłyk E. A silver nanoparticle-based method for determination of antioxidant capacity of rapeseed and its products. Analyst 2012; 137(16): 3750-59.
  • 29. Deng H, Wang B, Wu M, Deng B, Xie L, Guo Y. Rapidly colorimetric detection of caffeine in beverages by silver nanoparticle sensors coupled with magnetic molecularly imprinted polymeric microspheres. Int J Food Sci 2019; 54(1): 202-11.
  • 30. Li C, Yang Q, Wang X, Arabi M, Peng H, Li J, Xiong H, Chen L. Facile approach to the synthesis of molecularly imprinted ratiometric fluorescence nanosensor for the visual detection of folic acid. Food Chem 2020; 319: 126575.
  • 31. Neethirajan S, Jayas DS. Nanotechnology for the Food and Bioprocessing Industries. Food Bioproc Tech 2011; 4(1): 39-47.
  • 32. Zabala S, Castán J, Martínez C. Development of a time–temperature indicator (TTI) label by rotary printing technologies. Food Control 2015; 50: 57-64.
  • 33. Zhang L, Sun R, Yu H, Yu H, Xu G, Deng L, Qian J. A new method for matching gold nanoparticle-based time–temperature indicators with muffins without obtaining activation energy. J Food Sci 2020; 85(8): 2589-95.
  • 34. Aghaei Z, Ghorani B, Emadzadeh B, Kadkhodaee R, Tucker N. Protein-based halochromic electrospun nanosensor for monitoring trout fish freshness. Food Control 2020; 111: 107065.
  • 35. Mustafa F, Othman A, Andreescu S. Cerium oxide-based hypoxanthine biosensor for Fish spoilage monitoring. Sens Actuators B Chem 2021; 332: 129435.
  • 36. Maftoonazad N, Ramaswamy H. Design and testing of an electrospun nanofiber mat as a pH biosensor and monitor the pH associated quality in fresh date fruit (Rutab). Polym Test 2019; 75: 76-84.
  • 37. Zheng L, Cai G, Wang S, Liao M, Li Y, Lin J. A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosens Bioelectron 2019; 124-125: 143-49.
  • 38. Alvarez-Morezuelas A, Ortiz-Barredo A, Barandalla L, Ritter E, de Galarreta JIR. Estimation of Glucose Content in Raw Potatoes with a Biosensor as an Indicator of Acrylamide Level in Processed Potatoes. Potato Res 2021.
  • 39. Majumdar S, Thakur D, Chowdhury D. DNA Carbon-Nanodots based Electrochemical Biosensor for Detection of Mutagenic Nitrosamines. ACS Appl Bio Mater 2020; 3(3): 1796-803.
  • 40. Church J, Wang X, Calderon J, Lee WH, Cho HJ, Zhai L. A graphene-based nanosensor for in situ monitoring of polycyclic aromatic hydrocarbons (PAHs). J Nanosci Nanotechnol 2016; 16(2): 1620-23.
  • 41. Wang Y, Schill KM, Fry HC, Duncan TV. A Quantum Dot Nanobiosensor for Rapid Detection of Botulinum Neurotoxin Serotype E. ACS Sens 2020; 5(7): 2118-27.
  • 42. Bagheri pebdeni A, Hosseini M. Fast and selective whole cell detection of Staphylococcus aureus bacteria in food samples by paper based colorimetric nanobiosensor using peroxidase-like catalytic activity of DNA-Au/Pt bimetallic nanoclusters. Microchem J 2020; 159: 105475.
  • 43. Jin L, Li T, Yang T, Liang X, Wu B, Zou D, Hu L, Huang G, Zhang J. NMR rapid detection of Salmonella in milk based on ultra-small iron oxide nanobiosensor. Int Dairy J 2020; 110: 104807.
  • 44. Bhattacharya S, Jang J, Yang L, Akin D, Bashir R. BioMEMS and nanotechnology‐based approaches for rapid detection of biological entities. Journal of Rapid Methods & Automation in Microbiology 2007; 15(1): 1-32.
  • 45. Mustafa F, Andreescu S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Adv 2020; 10(33): 19309-36.
  • 46. Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS. Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron 2009; 25(1): 224-7.
  • 47. Rigo AA, Cezaro AMd, Muenchen DK, Martinazzo J, Brezolin AN, Hoehne L, Steffens J, Steffens C. Cantilever nanobiosensor based on the enzyme urease for detection of heavy metals. Braz J Chem Eng 2020; 36: 1429-37.
  • 48. Hassan MM, Li H, Ahmad W, Zareef M, Wang J, Xie S, Wang P, Ouyang Q, Wang S, Chen Q. Au@ Ag nanostructure based SERS substrate for simultaneous determination of pesticides residue in tea via solid phase extraction coupled multivariate calibration. Lwt 2019; 10: 290-97.
  • 49. Neethirajan S, Weng X, Tah A, Cordero JO, Ragavan KV. Nano-biosensor platforms for detecting food allergens – New trends. Sens Bio-Sens Res 2018; 18: 13-30.
  • 50. Weng X, Neethirajan S. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosens Bioelectron 2016; 85: 649-56.
  • 51. Speroni F, Elviri L, Careri M, Mangia A. Magnetic particles functionalized with PAMAM-dendrimers and antibodies: A new system for an ELISA method able to detect Ara h3/4 peanut allergen in foods. Anal Bioanal Chem 2010; 397(7): 3035-42.
  • 52. Zhang Y, Zhou D. Magnetic particle-based ultrasensitive biosensors for diagnostics. Expert Rev Mol Diagn 2012; 12(6): 565-71.
There are 52 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Reviews
Authors

Alper Baran 0000-0002-3089-6624

Publication Date December 6, 2022
Submission Date October 3, 2022
Published in Issue Year 2022 Volume: 2 Issue: 2

Cite