Mn-Cu Based Coating on Graphite Cycling in Alkaline and Neutral Electrolytes for Flexible Supercapacitor Applications
Year 2024,
Volume: 1 Issue: 2, 1 - 16, 27.11.2024
Abdulcabbar Yavuz
,
Hüseyin Faal
Abstract
Notable advancements have been made in the advancement of technologies utilizing flexible screens and sensors. However, the progress in the field of flexible energy storage devices has been comparatively restricted. Research on flexible energy storage electrodes is necessary because of the crucial role of flexibility and stretchability in wearable, biomedical, and portable electronic devices. This study examines the electrochemical characteristics of graphite filaments covered with alloy which possesses flexibility. Electrochemical synthesis of Mn-Cu-based modified graphite was achieved using a deep eutectic solvent at varying static voltages. Analyzed in this study was the electrochemical deposition performance of films in Ethaline deep eutectic solvent, as well as the subsequent cycling of the resultant electrodes in a KOH, Na2SO4 and the mixture of KOH and Na2SO4 electrolytes. The potential window used for this analysis was increased to 1.5 V. The graphite substrate, coated with Mn-Cu through the application of a voltage of –1.9 V, exhibited a length capacitance of 109 mF cm-2 when cycling electrolyte is the mixture of KOH and Na2SO4. The film exhibited extensive surface covering and showed promise for utilization in energy storage applications.
Ethical Statement
The studies do not require ethics committee permission.
Supporting Institution
The authors thank the Scientific Research Project Unit at Gaziantep University (MF.ALT.22.18).
Project Number
MF.ALT.22.18
Thanks
The authors thank the Scientific Research Project Unit at Gaziantep University (MF.ALT.22.18).
References
- Arumugam, B., Mayakrishnan, G., Subburayan Manickavasagam, S. K., Kim, S. C., and Vanaraj, R. (2023). An overview of active electrode materials for the efficient high-performance supercapacitor application. Crystals, 13(7), 1118.
- Baig, M. M., Khan, M. A., Gul, I. H., Rehman, S. U., Shahid, M., Javaid, S., and Baig, S. M. (2023). A review of advanced electrode materials for supercapacitors: challenges and opportunities. Journal of Electronic Materials, 52(9), 5775–5794.
- Brisse, A. L., Stevens, P., Toussaint, G., Crosnier, O., and Brousse, T. (2018). Ni(OH)2 and NiO based composites: Battery type electrode materials for hybrid supercapacitor devices. Materials, 11(7), 1178.
- Bu, I. Y. Y., and Huang, R. (2017). Fabrication of CuO-decorated reduced graphene oxide nanosheets for supercapacitor applications. Ceramics International, 43(1), 45–50.
- Dong, X., Guo, Z., Song, Y., Hou, M., Wang, J., Wang, Y., and Xia, Y. (2014). Flexible and wire‐shaped micro‐supercapacitor based on Ni(OH)2‐nanowire and ordered mesoporous carbon electrodes. Advanced Functional Materials, 24(22), 3405–3412.
- González, A., Goikolea, E., Barrena, J. A., and Mysyk, R. (2016). Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189–1206.
- Guney, M. S., and Tepe, Y. (2017). Classification and assessment of energy storage systems. Renewable and Sustainable Energy Reviews, 75, 1187–1197.
- Hannan, M. A., Wali, S. B., Ker, P. J., Abd Rahman, M. S., Mansor, M., Ramachandaramurthy, V. K., Muttaqi, K. M., Mahlia, T. M. I., and Dong, Z. Y. (2021). Battery energy-storage system: A review of technologies, optimization objectives, constraints, approaches, and outstanding issues. Journal of Energy Storage, 42, 103023.
- Ho, J., Jow, T. R., and Boggs, S. (2010). Historical introduction to capacitor technology. IEEE Electrical Insulation Magazine, 26(1), 20–25.
- Iro, Z. S., Subramani, C., and Dash, S. S. (2016). A brief review on electrode materials for supercapacitor. International Journal of Electrochemical Science, 11(12), 10628–10643.
- Kalhammer, F. R., and Schneider, T. R. (1976). Energy storage. Annual Review of Energy, 1(1), 311–343.
- Li, H. Q., Wang, Y. G., Wang, C. X., and Xia, Y. Y. (2008). A competitive candidate material for aqueous supercapacitors: High surface-area graphite. Journal of Power Sources, 185(2), 1557–1562.
- Luo, X., Wang, J., Dooner, M., and Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511–536.
- Mitali, J., Dhinakaran, S., and Mohamad, A. A. (2022). Energy storage systems: A review. Energy Storage and Saving, 1(3), 166–216.
- Mohanty, R. I., Mukherjee, A., Bhanja, P., and Jena, B. K. (2023). Novel microporous manganese phosphonate-derived metal oxides as prospective cathode materials for superior flexible asymmetric micro-supercapacitor device. Journal of Energy Storage, 72, 108730.
- Niknam, E., Naffakh-Moosavy, H., and Afshar, M. G. (2022). Electrochemical performance of nickel foam electrode in potassium hydroxide and sodium sulfate electrolytes for supercapacitor applications. Journal of Composites and Compounds, 4(12), 149–152.
- Purushothaman, K. K., Cuba, M., and Muralidharan, G. (2012). Supercapacitor behavior of α-MnMoO4 nanorods on different electrolytes. Materials Research Bulletin, 47(11), 3348–3351.
- Sahin, M. E., Blaabjerg, F., and Sangwongwanich, A. (2020). A review on supercapacitor materials and developments. Turkish Journal of Materials, 5(2), 10–24.
- Sayyed, S. G., Shaikh, A. V, Shinde, U. P., Hiremath, P., and Naik, N. (2023). Copper oxide-based high-performance symmetric flexible supercapacitor: Potentiodynamic deposition. Journal of Materials Science: Materials in Electronics, 34(17), 1361.
- Sharma, K., Arora, A., and Tripathi, S. K. (2019). Review of supercapacitors: Materials and devices. Journal of Energy Storage, 21, 801–825.
- Tran, C. C. H., Santos-Peña, J., and Damas, C. (2020). Electrodeposited manganese oxide supercapacitor microelectrodes with enhanced performance in neutral aqueous electrolyte. Electrochimica Acta, 335, 135564.
- Wen, Q., Chen, J. X., Tang, Y. L., Wang, J., and Yang, Z. (2015). Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere, 132, 63–69.
- Xie, Y., Huang, C., Zhou, L., Liu, Y., and Huang, H. (2009). Supercapacitor application of nickel oxide–titania nanocomposites. Composites Science and Technology, 69(13), 2108–2114.
- Yang, Y., Bremner, S., Menictas, C., and Kay, M. (2018). Battery energy storage system size determination in renewable energy systems: A review. Renewable and Sustainable Energy Reviews, 91, 109–125.
- Yavuz, A., Artan, M., and Yilmaz, N. F. (2022). The effect of growth potential on the self-discharge behavior of Cu–Ni based alloy electrodes. Journal of Physics and Chemistry of Solids, 169, 110872.
Year 2024,
Volume: 1 Issue: 2, 1 - 16, 27.11.2024
Abdulcabbar Yavuz
,
Hüseyin Faal
Project Number
MF.ALT.22.18
References
- Arumugam, B., Mayakrishnan, G., Subburayan Manickavasagam, S. K., Kim, S. C., and Vanaraj, R. (2023). An overview of active electrode materials for the efficient high-performance supercapacitor application. Crystals, 13(7), 1118.
- Baig, M. M., Khan, M. A., Gul, I. H., Rehman, S. U., Shahid, M., Javaid, S., and Baig, S. M. (2023). A review of advanced electrode materials for supercapacitors: challenges and opportunities. Journal of Electronic Materials, 52(9), 5775–5794.
- Brisse, A. L., Stevens, P., Toussaint, G., Crosnier, O., and Brousse, T. (2018). Ni(OH)2 and NiO based composites: Battery type electrode materials for hybrid supercapacitor devices. Materials, 11(7), 1178.
- Bu, I. Y. Y., and Huang, R. (2017). Fabrication of CuO-decorated reduced graphene oxide nanosheets for supercapacitor applications. Ceramics International, 43(1), 45–50.
- Dong, X., Guo, Z., Song, Y., Hou, M., Wang, J., Wang, Y., and Xia, Y. (2014). Flexible and wire‐shaped micro‐supercapacitor based on Ni(OH)2‐nanowire and ordered mesoporous carbon electrodes. Advanced Functional Materials, 24(22), 3405–3412.
- González, A., Goikolea, E., Barrena, J. A., and Mysyk, R. (2016). Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189–1206.
- Guney, M. S., and Tepe, Y. (2017). Classification and assessment of energy storage systems. Renewable and Sustainable Energy Reviews, 75, 1187–1197.
- Hannan, M. A., Wali, S. B., Ker, P. J., Abd Rahman, M. S., Mansor, M., Ramachandaramurthy, V. K., Muttaqi, K. M., Mahlia, T. M. I., and Dong, Z. Y. (2021). Battery energy-storage system: A review of technologies, optimization objectives, constraints, approaches, and outstanding issues. Journal of Energy Storage, 42, 103023.
- Ho, J., Jow, T. R., and Boggs, S. (2010). Historical introduction to capacitor technology. IEEE Electrical Insulation Magazine, 26(1), 20–25.
- Iro, Z. S., Subramani, C., and Dash, S. S. (2016). A brief review on electrode materials for supercapacitor. International Journal of Electrochemical Science, 11(12), 10628–10643.
- Kalhammer, F. R., and Schneider, T. R. (1976). Energy storage. Annual Review of Energy, 1(1), 311–343.
- Li, H. Q., Wang, Y. G., Wang, C. X., and Xia, Y. Y. (2008). A competitive candidate material for aqueous supercapacitors: High surface-area graphite. Journal of Power Sources, 185(2), 1557–1562.
- Luo, X., Wang, J., Dooner, M., and Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511–536.
- Mitali, J., Dhinakaran, S., and Mohamad, A. A. (2022). Energy storage systems: A review. Energy Storage and Saving, 1(3), 166–216.
- Mohanty, R. I., Mukherjee, A., Bhanja, P., and Jena, B. K. (2023). Novel microporous manganese phosphonate-derived metal oxides as prospective cathode materials for superior flexible asymmetric micro-supercapacitor device. Journal of Energy Storage, 72, 108730.
- Niknam, E., Naffakh-Moosavy, H., and Afshar, M. G. (2022). Electrochemical performance of nickel foam electrode in potassium hydroxide and sodium sulfate electrolytes for supercapacitor applications. Journal of Composites and Compounds, 4(12), 149–152.
- Purushothaman, K. K., Cuba, M., and Muralidharan, G. (2012). Supercapacitor behavior of α-MnMoO4 nanorods on different electrolytes. Materials Research Bulletin, 47(11), 3348–3351.
- Sahin, M. E., Blaabjerg, F., and Sangwongwanich, A. (2020). A review on supercapacitor materials and developments. Turkish Journal of Materials, 5(2), 10–24.
- Sayyed, S. G., Shaikh, A. V, Shinde, U. P., Hiremath, P., and Naik, N. (2023). Copper oxide-based high-performance symmetric flexible supercapacitor: Potentiodynamic deposition. Journal of Materials Science: Materials in Electronics, 34(17), 1361.
- Sharma, K., Arora, A., and Tripathi, S. K. (2019). Review of supercapacitors: Materials and devices. Journal of Energy Storage, 21, 801–825.
- Tran, C. C. H., Santos-Peña, J., and Damas, C. (2020). Electrodeposited manganese oxide supercapacitor microelectrodes with enhanced performance in neutral aqueous electrolyte. Electrochimica Acta, 335, 135564.
- Wen, Q., Chen, J. X., Tang, Y. L., Wang, J., and Yang, Z. (2015). Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere, 132, 63–69.
- Xie, Y., Huang, C., Zhou, L., Liu, Y., and Huang, H. (2009). Supercapacitor application of nickel oxide–titania nanocomposites. Composites Science and Technology, 69(13), 2108–2114.
- Yang, Y., Bremner, S., Menictas, C., and Kay, M. (2018). Battery energy storage system size determination in renewable energy systems: A review. Renewable and Sustainable Energy Reviews, 91, 109–125.
- Yavuz, A., Artan, M., and Yilmaz, N. F. (2022). The effect of growth potential on the self-discharge behavior of Cu–Ni based alloy electrodes. Journal of Physics and Chemistry of Solids, 169, 110872.