Research Article
BibTex RIS Cite

Sensitivite Microwave Sensor for Adulteration Detection in Olive Oil

Year 2024, Volume: 1 Issue: 2, 27 - 37, 27.11.2024

Abstract

A novel reflection-based microwave sensor that is reproducible, feasible, and sensitive to changes in dielectric parameters has been specifically developed, fabricated, and analyzed to detect sunflower oil mixed with olive oil. The proposed sensor is built on an FR-4 dielectric substrate and shows a magnitude of -47.19 dB at a resonance frequency of 9.48 GHz. An electric field distribution analysis of the sensor was performed, and it was determined that the electric field was significantly concentrated in the upper regions of the resonator. Olive oil was mixed with sunflower oil at the rates of 10%, 20% and 30%. The prepared samples were placed directly on the sensor and the performance of the sensor in simulation and experimental environments was tested. Based on the measured dielectric constants, the results of the experiments and simulations were observed to be consistent. The proposed sensor demonstrated superior performance compared to other sensors proposed in the literature in experimental measurements with a Q-factor of 4635, normalized sensitivity value of 3.62%, a Figure of Merit of 6581, and resonance frequency shift of 62 MHz occurred between the pure olive oil and the 10% sunflower oil adulterated olive oil sample. The proposed sensor can be preferred in industrial and liquid chemical detection applications due to its high sensitivity, high-quality factor, low cost, and small amount of sample required.

Thanks

The author H. Korkmaz acknowledges the Scientific and Technological Research Council of Turkey (TUBITAK) BIDEB 2211/C and Council of Higher Education (YOK) 100/2000 Doctoral Scholarship program for supporting his studies.

References

  • Abdulkarim, Y. I., Deng, L., Karaaslan, M., and Unal, E. (2019). Determination of the liquid chemicals depending on the electrical characteristics by using metamaterial absorber based sensor. Chemical Physics Letters, 732, 136655.
  • Abdulkarim, Y. I., Deng, L., Karaaslan, M., Dalgaç, Ş., Mahmud, R. H., Ozkan Alkurt, F., Muhammadsharif, F. F., Awl, H. N., Huang, S., and Luo, H. (2020a). The detection of chemical materials with a metamaterial-based sensor incorporating oval wing resonators. Electronics, 9(5), 825.
  • Abdulkarim, Y. I., Deng, L., Karaaslan, M., Altıntaş, O., Awl, H. N., Muhammadsharif, F. F., Liao, C., Unal, E., and Luo, H. (2020b). Novel metamaterials-based hypersensitized liquid sensor integrating omega-shaped resonator with microstrip transmission line. Sensors, 20(3), 943.
  • Abdulkarim, Y. I., Deng, L., Luo, H., Huang, S., Karaaslan, M., Altıntaş, O., Bakır, M., Muhammadsharif, F. F., Awl, H. N., Sabah, C., and Al-badri, K. S. L. (2020c). Design and study of a metamaterial based sensor for the application of liquid chemicals detection. Journal of Materials Research and Technology, 9(5), 10291-10304.
  • Alahnomi, R. A., Zakaria, Z., Yussof, Z. M., Althuwayb, A. A., Alhegazi, A., Alsariera, H., and Rahman, N. A. (2021). Review of recent microwave planar resonator-based sensors: Techniques of complex permittivity extraction, applications, open challenges and future research directions. Sensors, 21(7), 2267.
  • Altintaş, O., Aksoy, M., Ünal, E., and Karaaslan, M. (2019). Chemical liquid and transformer oil condition sensor based on metamaterial-inspired labyrinth resonator. Journal of the Electrochemical Society, 166(6), B482.
  • Altıntaş, O., Aksoy, M., and Ünal, E. (2020). Design of a metamaterial inspired omega shaped resonator based sensor for industrial implementations. Physica E: Low-dimensional Systems and Nanostructures, 116, 113734.
  • Bakır, M., Karaaslan, M., Karadag, F., Dalgac, S., Ünal, E., and Akgöl, O. (2019). Metamaterial sensor for transformer oil, and microfluidics. The Applied Computational Electromagnetics Society Journal (ACES), 799-806.
  • Bhatti, M. H., Jabbar, M. A., Khan, M. A., and Massoud, Y. (2022). Low-cost microwave sensor for characterization and adulteration detection in edible oil. Applied Sciences, 12(17), 8665.
  • Ergin, T., Stenger, N., Brenner, P., Pendry, J. B., and Wegener, M. (2010). Three-dimensional invisibility cloak at optical wavelengths. Science, 328(5976), 337-339.
  • Göğüş, F., Özkaya, M. T., and Ötleş, S. (2009). Zeytinyağı. Ankara: Eflatun Yayınevi. Gunstone, F. D. (2011). Production and trade of vegetable oils. Vegetable oils in food technology: Composition, properties and uses, 2, 1-24.
  • Hasar, U. C., Hasar, H., Ozturk, H., Korkmaz, H., Kaya, Y., Ozkaya, M. A., Ebrahimi, A., Barroso, J. J., Nayyeri, V., and Ramahi, O. M. (2024a). Simple and inexpensive microwave setup for industrial based applications: Quantification of flower honey adulteration as a case study. Scientific Reports, 14(1), 8847.
  • Hasar, U. C., Ozturk, H., Korkmaz, H., Nayyeri, V., and Ramahi, O. M. (2024b). De-embedding method for a sensing area characterization of planar microstrip sensors without evaluating error networks. Scientific Reports, 14(1), 10062.
  • Hashempour-baltork, F., Zade, S. V., Mazaheri, Y., Alizadeh, A. M., Rastegar, H., Abdian, Z., Torbati, M., and Damirchi, S. A. (2024). Recent methods in detection of olive oil adulteration: State-of-the-Art. Journal of Agriculture and Food Research, 16, 101123.
  • Hudec, P., Raboch, J., Randus, M., Hoffmann, K., Holub, A., Svanda, M., and Polivka, M. (2009, September). Microwave radar sensors for active defense systems. In 2009 European Radar Conference (EuRAD) (pp. 581-584). IEEE.
  • Islam, M. T., Islam, M. R., Islam, M. T., Hoque, A., and Samsuzzaman, M. (2021). Linear regression of sensitivity for meander line parasitic resonator based on ENG metamaterial in the application of sensing. Journal of Materials Research and Technology, 10, 1103-1121.
  • Islam, M., Bełkowska, L., Konieczny, P., Fornal, E., and Tomaszewska-Gras, J. (2022a). Differential scanning calorimetry for authentication of edible fats and oils–What can we learn from the past to face the current challenges?. Journal of Food and Drug Analysis, 30(2), 185.
  • Islam, M. R., Islam, M. T., Bais, B., Almalki, S. H., Alsaif, H., and Islam, M. S. (2022b). Metamaterial sensor based on rectangular enclosed adjacent triple circle split ring resonator with good quality factor for microwave sensing application. Scientific reports, 12(1), 6792.
  • Khalil, M. A., Yong, W. H., Islam, M. T., Hoque, A., Islam, M. S., Leei, C. C., and Soliman, M. S. (2023). Double-negative metamaterial square enclosed QSSR for microwave sensing application in S-band with high sensitivity and Q-factor. Scientific Reports, 13(1), 7373.
  • Khursheed, M., Ahmad, A., Noor, S. E., García del Moral, L. F., and Martos Núñez, V. (2024). Chromatographic Techniques for the Detection and Identification of Olive Oil Adulteration.
  • Korkmaz, H., and Hasar, U. (2021). Wide band metamaterial absorber with lumped element. The International Journal of Materials and Engineering Technology, 4(1), 61-66.
  • Korkmaz, H., Hasar, U. C., and Ramahi, O. M. (2023). Thin-film MXene-based metamaterial absorber design for solar cell applications. Optical and Quantum Electronics, 55(6), 530.
  • Korostynska, O., Mason, A., and Al-Shamma'a, A. (2014). Microwave sensors for the non-invasive monitoring of industrial and medical applications. Sensor Review, 34(2), 182-191.
  • Krödel, S., Thomé, N., and Daraio, C. (2015). Wide band-gap seismic metastructures. Extreme Mechanics Letters, 4, 111-117.
  • Lee, H. J., and Yook, J. G. (2008). Biosensing using split-ring resonators at microwave regime. Applied Physics Letters, 92(25).
  • Lee, Y., Kim, S. J., Park, H., and Lee, B. (2017). Metamaterials and metasurfaces for sensor applications. Sensors, 17(8), 1726.
  • Meenu, M., Cai, Q., and Xu, B. (2019). A critical review on analytical techniques to detect adulteration of extra virgin olive oil. Trends in Food Science & Technology, 91, 391-408.
  • Menegoz Ursol, L., and Moret, S. (2024). Evaluation of the impact of olive milling on the mineral oil contamination of extra‐virgin olive oils. European Journal of Lipid Science and Technology, 126(3), 2300123.
  • Mehrotra, P., Chatterjee, B., and Sen, S. (2019). EM-wave biosensors: A review of RF, microwave, mm-wave and optical sensing. Sensors, 19(5), 1013.
  • Mohd Bahar, A. A., Zakaria, Z., Md. Arshad, M. K., Isa, A. A. M., Dasril, Y., and Alahnomi, R. A. (2019). Real time microwave biochemical sensor based on circular SIW approach for aqueous dielectric detection. Scientific Reports, 9(1), 5467.
  • Musa, I. (2024). Investigation the optical properties of Palestinian olive oils for different geographical regions by optical spectroscopy technique. Food Chemistry Advances, 4, 100584.
  • Nyfors, E. (2000). Industrial microwave sensors—A review. Subsurface Sensing Technologies and Applications, 1(1), 23-43.
  • Osman, S. B., Korostynka, O., Mason, A., Cullen, J. D., and Al-Shamma’a, A. I. (2014). Application of microwave spectroscopy analysis on determining quality of vegetable oil. International Journal on Smart Sensing and Intelligent Systems, 7(5), 1-4.
  • Obaidullah, M., Esat, V., and Sabah, C. (2021). Multi-band (9, 4) chiral single-walled carbon nanotube based metamaterial absorber for solar cells. Optics & Laser Technology, 134, 106623.
  • Rueda, M. P., Domínguez-Vidal, A., Llorent-Martínez, E. J., Aranda, V., and Ayora-Cañada, M. J. (2024). Monitoring organic matter transformation of olive oil production residues in a full-scale composting plant by fluorescence spectroscopy. Environmental Technology & Innovation, 103695.
  • Shi, Q., Dong, B., He, T., Sun, Z., Zhu, J., Zhang, Z., and Lee, C. (2020). Progress in wearable electronics/photonics-moving toward the era of artificial intelligence and internet of things. InfoMat, 2(6), 1131-1162.
  • Tamer, A., Alkurt, F. O., Altintas, O., Karaaslan, M., Unal, E., Akgol, O., Karadag, F., and Sabah, C. (2018). Transmission line integrated metamaterial based liquid sensor. Journal of the Electrochemical Society, 165(7), B251.
  • Tamer, A., Karadağ, F., Ünal, E., Abdulkarim, Y. I., Deng, L., Altintas, O., Bakır, M., and Karaaslan, M. (2020). Metamaterial based sensor integrating transmission line for detection of branded and unbranded diesel fuel. Chemical Physics Letters, 742, 137169.
  • Tümkaya, M. A., Dinçer, F., Karaaslan, M., and Sabah, C. (2017). Sensitive metamaterial sensor for distinction of authentic and inauthentic fuel samples. Journal of Electronic Materials, 46, 4955-4962.
  • Tümkaya, M. A., Karaaslan, M., and Sabah, C. (2018). Metamaterial-based high efficiency portable sensor application for determining branded and unbranded fuel oil. Bulletin of Materials Science, 41, 1-8.
  • Tümkaya, M. A., Ünal, E., and Sabah, C. (2019). Metamaterial-based fuel sensor application with three rhombus slots. International Journal of Modern Physics B, 33(24), 1950276.
  • Vélez, P., Su, L., Grenier, K., Mata-Contreras, J., Dubuc, D., and Martín, F. (2017). Microwave microfluidic sensor based on a microstrip splitter/combiner configuration and split ring resonators (SRRs) for dielectric characterization of liquids. IEEE Sensors Journal, 17(20), 6589-6598.
  • Wu, B., Jiang, W., Jiang, J., Zhao, Z., Tang, Y., Zhou, W., and Chen, W. (2024). Wave manipulation in intelligent metamaterials: recent progress and prospects. Advanced Functional Materials, 2316745.
  • Yılmaz-Düzyaman, H., de la Rosa, R., Velasco, L., Núñez-Sánchez, N., and León, L. (2024). Oil quality prediction in olive oil by near-infrared spectroscopy: Applications in olive breeding. Agriculture, 14(5), 721.
Year 2024, Volume: 1 Issue: 2, 27 - 37, 27.11.2024

Abstract

References

  • Abdulkarim, Y. I., Deng, L., Karaaslan, M., and Unal, E. (2019). Determination of the liquid chemicals depending on the electrical characteristics by using metamaterial absorber based sensor. Chemical Physics Letters, 732, 136655.
  • Abdulkarim, Y. I., Deng, L., Karaaslan, M., Dalgaç, Ş., Mahmud, R. H., Ozkan Alkurt, F., Muhammadsharif, F. F., Awl, H. N., Huang, S., and Luo, H. (2020a). The detection of chemical materials with a metamaterial-based sensor incorporating oval wing resonators. Electronics, 9(5), 825.
  • Abdulkarim, Y. I., Deng, L., Karaaslan, M., Altıntaş, O., Awl, H. N., Muhammadsharif, F. F., Liao, C., Unal, E., and Luo, H. (2020b). Novel metamaterials-based hypersensitized liquid sensor integrating omega-shaped resonator with microstrip transmission line. Sensors, 20(3), 943.
  • Abdulkarim, Y. I., Deng, L., Luo, H., Huang, S., Karaaslan, M., Altıntaş, O., Bakır, M., Muhammadsharif, F. F., Awl, H. N., Sabah, C., and Al-badri, K. S. L. (2020c). Design and study of a metamaterial based sensor for the application of liquid chemicals detection. Journal of Materials Research and Technology, 9(5), 10291-10304.
  • Alahnomi, R. A., Zakaria, Z., Yussof, Z. M., Althuwayb, A. A., Alhegazi, A., Alsariera, H., and Rahman, N. A. (2021). Review of recent microwave planar resonator-based sensors: Techniques of complex permittivity extraction, applications, open challenges and future research directions. Sensors, 21(7), 2267.
  • Altintaş, O., Aksoy, M., Ünal, E., and Karaaslan, M. (2019). Chemical liquid and transformer oil condition sensor based on metamaterial-inspired labyrinth resonator. Journal of the Electrochemical Society, 166(6), B482.
  • Altıntaş, O., Aksoy, M., and Ünal, E. (2020). Design of a metamaterial inspired omega shaped resonator based sensor for industrial implementations. Physica E: Low-dimensional Systems and Nanostructures, 116, 113734.
  • Bakır, M., Karaaslan, M., Karadag, F., Dalgac, S., Ünal, E., and Akgöl, O. (2019). Metamaterial sensor for transformer oil, and microfluidics. The Applied Computational Electromagnetics Society Journal (ACES), 799-806.
  • Bhatti, M. H., Jabbar, M. A., Khan, M. A., and Massoud, Y. (2022). Low-cost microwave sensor for characterization and adulteration detection in edible oil. Applied Sciences, 12(17), 8665.
  • Ergin, T., Stenger, N., Brenner, P., Pendry, J. B., and Wegener, M. (2010). Three-dimensional invisibility cloak at optical wavelengths. Science, 328(5976), 337-339.
  • Göğüş, F., Özkaya, M. T., and Ötleş, S. (2009). Zeytinyağı. Ankara: Eflatun Yayınevi. Gunstone, F. D. (2011). Production and trade of vegetable oils. Vegetable oils in food technology: Composition, properties and uses, 2, 1-24.
  • Hasar, U. C., Hasar, H., Ozturk, H., Korkmaz, H., Kaya, Y., Ozkaya, M. A., Ebrahimi, A., Barroso, J. J., Nayyeri, V., and Ramahi, O. M. (2024a). Simple and inexpensive microwave setup for industrial based applications: Quantification of flower honey adulteration as a case study. Scientific Reports, 14(1), 8847.
  • Hasar, U. C., Ozturk, H., Korkmaz, H., Nayyeri, V., and Ramahi, O. M. (2024b). De-embedding method for a sensing area characterization of planar microstrip sensors without evaluating error networks. Scientific Reports, 14(1), 10062.
  • Hashempour-baltork, F., Zade, S. V., Mazaheri, Y., Alizadeh, A. M., Rastegar, H., Abdian, Z., Torbati, M., and Damirchi, S. A. (2024). Recent methods in detection of olive oil adulteration: State-of-the-Art. Journal of Agriculture and Food Research, 16, 101123.
  • Hudec, P., Raboch, J., Randus, M., Hoffmann, K., Holub, A., Svanda, M., and Polivka, M. (2009, September). Microwave radar sensors for active defense systems. In 2009 European Radar Conference (EuRAD) (pp. 581-584). IEEE.
  • Islam, M. T., Islam, M. R., Islam, M. T., Hoque, A., and Samsuzzaman, M. (2021). Linear regression of sensitivity for meander line parasitic resonator based on ENG metamaterial in the application of sensing. Journal of Materials Research and Technology, 10, 1103-1121.
  • Islam, M., Bełkowska, L., Konieczny, P., Fornal, E., and Tomaszewska-Gras, J. (2022a). Differential scanning calorimetry for authentication of edible fats and oils–What can we learn from the past to face the current challenges?. Journal of Food and Drug Analysis, 30(2), 185.
  • Islam, M. R., Islam, M. T., Bais, B., Almalki, S. H., Alsaif, H., and Islam, M. S. (2022b). Metamaterial sensor based on rectangular enclosed adjacent triple circle split ring resonator with good quality factor for microwave sensing application. Scientific reports, 12(1), 6792.
  • Khalil, M. A., Yong, W. H., Islam, M. T., Hoque, A., Islam, M. S., Leei, C. C., and Soliman, M. S. (2023). Double-negative metamaterial square enclosed QSSR for microwave sensing application in S-band with high sensitivity and Q-factor. Scientific Reports, 13(1), 7373.
  • Khursheed, M., Ahmad, A., Noor, S. E., García del Moral, L. F., and Martos Núñez, V. (2024). Chromatographic Techniques for the Detection and Identification of Olive Oil Adulteration.
  • Korkmaz, H., and Hasar, U. (2021). Wide band metamaterial absorber with lumped element. The International Journal of Materials and Engineering Technology, 4(1), 61-66.
  • Korkmaz, H., Hasar, U. C., and Ramahi, O. M. (2023). Thin-film MXene-based metamaterial absorber design for solar cell applications. Optical and Quantum Electronics, 55(6), 530.
  • Korostynska, O., Mason, A., and Al-Shamma'a, A. (2014). Microwave sensors for the non-invasive monitoring of industrial and medical applications. Sensor Review, 34(2), 182-191.
  • Krödel, S., Thomé, N., and Daraio, C. (2015). Wide band-gap seismic metastructures. Extreme Mechanics Letters, 4, 111-117.
  • Lee, H. J., and Yook, J. G. (2008). Biosensing using split-ring resonators at microwave regime. Applied Physics Letters, 92(25).
  • Lee, Y., Kim, S. J., Park, H., and Lee, B. (2017). Metamaterials and metasurfaces for sensor applications. Sensors, 17(8), 1726.
  • Meenu, M., Cai, Q., and Xu, B. (2019). A critical review on analytical techniques to detect adulteration of extra virgin olive oil. Trends in Food Science & Technology, 91, 391-408.
  • Menegoz Ursol, L., and Moret, S. (2024). Evaluation of the impact of olive milling on the mineral oil contamination of extra‐virgin olive oils. European Journal of Lipid Science and Technology, 126(3), 2300123.
  • Mehrotra, P., Chatterjee, B., and Sen, S. (2019). EM-wave biosensors: A review of RF, microwave, mm-wave and optical sensing. Sensors, 19(5), 1013.
  • Mohd Bahar, A. A., Zakaria, Z., Md. Arshad, M. K., Isa, A. A. M., Dasril, Y., and Alahnomi, R. A. (2019). Real time microwave biochemical sensor based on circular SIW approach for aqueous dielectric detection. Scientific Reports, 9(1), 5467.
  • Musa, I. (2024). Investigation the optical properties of Palestinian olive oils for different geographical regions by optical spectroscopy technique. Food Chemistry Advances, 4, 100584.
  • Nyfors, E. (2000). Industrial microwave sensors—A review. Subsurface Sensing Technologies and Applications, 1(1), 23-43.
  • Osman, S. B., Korostynka, O., Mason, A., Cullen, J. D., and Al-Shamma’a, A. I. (2014). Application of microwave spectroscopy analysis on determining quality of vegetable oil. International Journal on Smart Sensing and Intelligent Systems, 7(5), 1-4.
  • Obaidullah, M., Esat, V., and Sabah, C. (2021). Multi-band (9, 4) chiral single-walled carbon nanotube based metamaterial absorber for solar cells. Optics & Laser Technology, 134, 106623.
  • Rueda, M. P., Domínguez-Vidal, A., Llorent-Martínez, E. J., Aranda, V., and Ayora-Cañada, M. J. (2024). Monitoring organic matter transformation of olive oil production residues in a full-scale composting plant by fluorescence spectroscopy. Environmental Technology & Innovation, 103695.
  • Shi, Q., Dong, B., He, T., Sun, Z., Zhu, J., Zhang, Z., and Lee, C. (2020). Progress in wearable electronics/photonics-moving toward the era of artificial intelligence and internet of things. InfoMat, 2(6), 1131-1162.
  • Tamer, A., Alkurt, F. O., Altintas, O., Karaaslan, M., Unal, E., Akgol, O., Karadag, F., and Sabah, C. (2018). Transmission line integrated metamaterial based liquid sensor. Journal of the Electrochemical Society, 165(7), B251.
  • Tamer, A., Karadağ, F., Ünal, E., Abdulkarim, Y. I., Deng, L., Altintas, O., Bakır, M., and Karaaslan, M. (2020). Metamaterial based sensor integrating transmission line for detection of branded and unbranded diesel fuel. Chemical Physics Letters, 742, 137169.
  • Tümkaya, M. A., Dinçer, F., Karaaslan, M., and Sabah, C. (2017). Sensitive metamaterial sensor for distinction of authentic and inauthentic fuel samples. Journal of Electronic Materials, 46, 4955-4962.
  • Tümkaya, M. A., Karaaslan, M., and Sabah, C. (2018). Metamaterial-based high efficiency portable sensor application for determining branded and unbranded fuel oil. Bulletin of Materials Science, 41, 1-8.
  • Tümkaya, M. A., Ünal, E., and Sabah, C. (2019). Metamaterial-based fuel sensor application with three rhombus slots. International Journal of Modern Physics B, 33(24), 1950276.
  • Vélez, P., Su, L., Grenier, K., Mata-Contreras, J., Dubuc, D., and Martín, F. (2017). Microwave microfluidic sensor based on a microstrip splitter/combiner configuration and split ring resonators (SRRs) for dielectric characterization of liquids. IEEE Sensors Journal, 17(20), 6589-6598.
  • Wu, B., Jiang, W., Jiang, J., Zhao, Z., Tang, Y., Zhou, W., and Chen, W. (2024). Wave manipulation in intelligent metamaterials: recent progress and prospects. Advanced Functional Materials, 2316745.
  • Yılmaz-Düzyaman, H., de la Rosa, R., Velasco, L., Núñez-Sánchez, N., and León, L. (2024). Oil quality prediction in olive oil by near-infrared spectroscopy: Applications in olive breeding. Agriculture, 14(5), 721.
There are 44 citations in total.

Details

Primary Language English
Subjects Engineering Electromagnetics
Journal Section Research Article
Authors

Hüseyin Korkmaz 0000-0002-3518-1943

Uğurcem Hasar

Publication Date November 27, 2024
Submission Date July 4, 2024
Acceptance Date September 27, 2024
Published in Issue Year 2024 Volume: 1 Issue: 2

Cite

APA Korkmaz, H., & Hasar, U. (2024). Sensitivite Microwave Sensor for Adulteration Detection in Olive Oil. Natural Sciences and Engineering Bulletin, 1(2), 27-37.