Synthesis of Polyurethane from Apricot Kernel Oil and Characterization
Year 2023,
, 10 - 15, 30.06.2023
İdil Karaca Açarı
,
Beyza Fırat
,
Ahmet Demir
,
Turgay Seçkin
Abstract
In the study, natural origin polyol was obtained from apricot kernel oil. The obtained polyol was used in the synthesis of polyurethane, which is an industrially important polymer. Obtaining polyol from apricot kernel oil was firstly epoxidized with a two-step process and then converted to the desired polyol structure by oxirane ring opening. The obtained biocompatible polyol structure was subjected to polymerization process with the hexamethylene diisocyanate structure. The obtained polyurethane structures were characterized chemically, thermally and morphologically. The chemical structure was investigated by FTIR spectra. The thermal stability, Tg values and decomposition temperatures of the obtained polyurethane structure were investigated by TGA, DTA and DSC techniques. The basic morphological features of the polyurethane structure were evaluated by SEM analysis.
References
- Desroches, M., Escouvois M., Auvergne R., Caillol S., Boutevin B. (2012). From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products, Polym Rev., 52(1): 38-79.
- Lligadas, G., Ronda, J.C., Gali`a, M., C`adiz, V. (2010). Plant oils as platform chemicals for polyurethane synthesis: Current state-of-the-art, Biomacromolecules, 11(11): 2825–2835.
- Saad, N.M., Zubir, S.A. (2019). Palm kernel oil polyol-based polyurethane as shape memory material: effect of polyol molar ratio, J. Phys. Sci., 30(2): 77-89.
- Babb, A.D. (2012). Polyurethanes from Renewable Resources, Adv Polym Sci., 245: 315-360.
- Pfister, D.P., Xia ,Y., Larock, R.C. (2011). Recent advances in vegetable oil-based polyurethanes, ChemSusChem., 4(6): 703-717.
- Xia, Y., Larock, R.C. (2010). Vegetable oil-based polymeric materials: synthesis, properties, and applications, Green Chem., 12(11): 1893-1909.
- Ibrahım, S., Ahmad, A., Mohamed, N.S. (2015). Synthesis and characterization of castor oil-based polyurethane for potential application as host in polymer electrolytes, Bull. Mater. Sci., 38, 1155-1161.
- Sahoo, S., Kalıta, H., Mohanty, S., Nayak, S. (2016). Synthesis of Vegetable Oil-Based Polyurethane: A Study on Curing Kinetics Behavior, Int. J. Chem. Kinet., 48(10): 622-634.
- Campanella, A., Bonnaillie, L.M., Wool, R.P. (2009). Polyurethane foams from soyoil-based polyols, J. Appl. Polym. Sci., 112(4): 2567–2578.
- Zlatanic, A., Lava, C., Zhang, W., Petrovic, Z.S. (2004). Effect of structure on properties of polyols and polyurethanes based on different vegetable oils, J. Polym. Sci., Part B : Polym. Phys., 42(5): 809–819.
- Miao, S., Zhang, S., Su, Z., Wang, P. (2010). A novel vegetable oil-lactate hybrid monomer for synthesis of high-Tg polyurethanes, J. Polym. Sci., Part A: Polym. Chem., 48(1): 243–250.
- Abril-Milán, D., Valdés, O., Mirabal-Gallardo, Y., de la Torre, F.A, Bustamante, C., Contreras, J. (2018). Preparation of renewable bio-polyols from two species of colliguaja for rigid polyurethane foams, Materials, 11(11): 2244.
- Monteavaro, L., da Silva, E,. Costa, A., Samios, D,. Gervase, A., Petzhold, C. (2005). Polyurethane networks from formiated soy polyols: Synthesis and mechanical characterization, J. Am. Oil Chem. Soc., 82(5): 365–371.
- Zhang, J., Tang J.J. and Zhang J.X. (2015). Polyols prepared from ring opening epoxized soybean oil by a castor oil-based fatty diol, Int. J. Polym. Sci.,2015: 1-8.
- Açarı Karaca, İ. (2021). Investigation of the effectiveness of polyurethane composites containing gelatin at different rates on the release of ciprofloxacin, J.Chem.Soc.Pak., 43(6): 645-655.
- Hao, Y., Wang, J., Qi, L., Qiu, Y., Liu, H., Zhang, Y., Wang, X. (2022). A comparative study of apricot kernel oil yield using different extraction methods, Bioresources, 17(3): 5146-5163.
- Janzen, D.A., Dınız, M.F., Azevedo, J.B., Pınto, J.R.A., Sanches, N.B., Dutra, Rıta de Cássıa L. (2021). Qualitative and quantitative evaluation of epoxy systems by Fourier transform infrared spectroscopy and the flexibilizing effect of mercaptans, An Acad Bras Cienc., 93(2): e20200799.
- Simon, D., Borreguero, A.M., Lucas, A. de., Rodríguez, J.F. (2015). Valorization of crude glycerol as a novel transesterification agent in the glycolysis of polyurethane foam waste, Polym. Degrad. Stab., 121: 126-136.
- Açarı Karaca, İ., Boran, F., Kolak, S., Tatlıcı, E., Yeşilada, Ö., Köytepe, S., Ateş, B. (2022). Preparation of 10‑undecenoic acid based polyurethane/PCL fibers by electrospinning method and investigation of their antifungal properties, Polym. Bull.,79(2): 9179–9197.
- Bajsic, E.G., Rek,V. (2000). DSC study of morphological changes in segmented polyurethane elastomers, J. Elastomers Plast., 32: 162-180.
- Pourjavadi, A., Rezai, N., Zohuriaan-M, M.J. (1998). A Renewable polyurethane: synthesis and characterization of the ınterpenetrating networks (ıpns) from cardanol oil. J. Appl. Polym. Sci., 68: 173-183.
- Bhunia, H.P., Jana, R.N., Basak A., Lenka, S., Nando, G.B. (1998). Synthesis of polyurethane from cashew nut shell liquid (cnsl), a renewable resource. J. Appl. Polym. Sci. 36 (3): 391-400.
- Badri, K.H. (2012). Biobased Polyurethane from Palm Kernel Oil-Based Polyol. In: Zafar, F., Sharmin, E., (Eds). Polyurethane, Croatia: InTech, (2012) 447-470.
- Gurau, V.S., Sandhu, S.S. (2018). Optimization and characterization of biodiesel production from India originated bitter apricot kernel oil, J. Sci. Ind. Res., 77: 345-348.
- Priyadarshi, R., Sauraj, Kumar, B., Deeba, F., Kulshreshtha, A., Negi, Y.S. (2018). Chitosan films incorporated with Apricot (Prunus armeniaca) kernel essential oil as active food packaging material, Food Hydrocoll., 85: 158-166.
- Chung, H., Kim, J-Y. (2014). Antimicrobial activity of β-cd finished and apricot kernel oil applied fabrics, Fibers Polym., 15(5): 924-931.
- Grenier, S., Sandig, M., Mequanint, K. (2007). Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells, J. Biomed. Mater. Res.,82A(4): 802-809.
- Wendels, S., Avèrous, L. (2021). Biobased polyurethanes for biomedical applications, Bioact. Mater., 6: 1083-1106.
- Çalıkoğlu, Y. (2017). New polyurethane synthesis and characterization from epoxidized soybean oil by ring-opening polyols with thioglycolic acid and thioglycolic acid methyl ester, MSc. Thesis, Sakarya University, Sakarya.
Year 2023,
, 10 - 15, 30.06.2023
İdil Karaca Açarı
,
Beyza Fırat
,
Ahmet Demir
,
Turgay Seçkin
References
- Desroches, M., Escouvois M., Auvergne R., Caillol S., Boutevin B. (2012). From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products, Polym Rev., 52(1): 38-79.
- Lligadas, G., Ronda, J.C., Gali`a, M., C`adiz, V. (2010). Plant oils as platform chemicals for polyurethane synthesis: Current state-of-the-art, Biomacromolecules, 11(11): 2825–2835.
- Saad, N.M., Zubir, S.A. (2019). Palm kernel oil polyol-based polyurethane as shape memory material: effect of polyol molar ratio, J. Phys. Sci., 30(2): 77-89.
- Babb, A.D. (2012). Polyurethanes from Renewable Resources, Adv Polym Sci., 245: 315-360.
- Pfister, D.P., Xia ,Y., Larock, R.C. (2011). Recent advances in vegetable oil-based polyurethanes, ChemSusChem., 4(6): 703-717.
- Xia, Y., Larock, R.C. (2010). Vegetable oil-based polymeric materials: synthesis, properties, and applications, Green Chem., 12(11): 1893-1909.
- Ibrahım, S., Ahmad, A., Mohamed, N.S. (2015). Synthesis and characterization of castor oil-based polyurethane for potential application as host in polymer electrolytes, Bull. Mater. Sci., 38, 1155-1161.
- Sahoo, S., Kalıta, H., Mohanty, S., Nayak, S. (2016). Synthesis of Vegetable Oil-Based Polyurethane: A Study on Curing Kinetics Behavior, Int. J. Chem. Kinet., 48(10): 622-634.
- Campanella, A., Bonnaillie, L.M., Wool, R.P. (2009). Polyurethane foams from soyoil-based polyols, J. Appl. Polym. Sci., 112(4): 2567–2578.
- Zlatanic, A., Lava, C., Zhang, W., Petrovic, Z.S. (2004). Effect of structure on properties of polyols and polyurethanes based on different vegetable oils, J. Polym. Sci., Part B : Polym. Phys., 42(5): 809–819.
- Miao, S., Zhang, S., Su, Z., Wang, P. (2010). A novel vegetable oil-lactate hybrid monomer for synthesis of high-Tg polyurethanes, J. Polym. Sci., Part A: Polym. Chem., 48(1): 243–250.
- Abril-Milán, D., Valdés, O., Mirabal-Gallardo, Y., de la Torre, F.A, Bustamante, C., Contreras, J. (2018). Preparation of renewable bio-polyols from two species of colliguaja for rigid polyurethane foams, Materials, 11(11): 2244.
- Monteavaro, L., da Silva, E,. Costa, A., Samios, D,. Gervase, A., Petzhold, C. (2005). Polyurethane networks from formiated soy polyols: Synthesis and mechanical characterization, J. Am. Oil Chem. Soc., 82(5): 365–371.
- Zhang, J., Tang J.J. and Zhang J.X. (2015). Polyols prepared from ring opening epoxized soybean oil by a castor oil-based fatty diol, Int. J. Polym. Sci.,2015: 1-8.
- Açarı Karaca, İ. (2021). Investigation of the effectiveness of polyurethane composites containing gelatin at different rates on the release of ciprofloxacin, J.Chem.Soc.Pak., 43(6): 645-655.
- Hao, Y., Wang, J., Qi, L., Qiu, Y., Liu, H., Zhang, Y., Wang, X. (2022). A comparative study of apricot kernel oil yield using different extraction methods, Bioresources, 17(3): 5146-5163.
- Janzen, D.A., Dınız, M.F., Azevedo, J.B., Pınto, J.R.A., Sanches, N.B., Dutra, Rıta de Cássıa L. (2021). Qualitative and quantitative evaluation of epoxy systems by Fourier transform infrared spectroscopy and the flexibilizing effect of mercaptans, An Acad Bras Cienc., 93(2): e20200799.
- Simon, D., Borreguero, A.M., Lucas, A. de., Rodríguez, J.F. (2015). Valorization of crude glycerol as a novel transesterification agent in the glycolysis of polyurethane foam waste, Polym. Degrad. Stab., 121: 126-136.
- Açarı Karaca, İ., Boran, F., Kolak, S., Tatlıcı, E., Yeşilada, Ö., Köytepe, S., Ateş, B. (2022). Preparation of 10‑undecenoic acid based polyurethane/PCL fibers by electrospinning method and investigation of their antifungal properties, Polym. Bull.,79(2): 9179–9197.
- Bajsic, E.G., Rek,V. (2000). DSC study of morphological changes in segmented polyurethane elastomers, J. Elastomers Plast., 32: 162-180.
- Pourjavadi, A., Rezai, N., Zohuriaan-M, M.J. (1998). A Renewable polyurethane: synthesis and characterization of the ınterpenetrating networks (ıpns) from cardanol oil. J. Appl. Polym. Sci., 68: 173-183.
- Bhunia, H.P., Jana, R.N., Basak A., Lenka, S., Nando, G.B. (1998). Synthesis of polyurethane from cashew nut shell liquid (cnsl), a renewable resource. J. Appl. Polym. Sci. 36 (3): 391-400.
- Badri, K.H. (2012). Biobased Polyurethane from Palm Kernel Oil-Based Polyol. In: Zafar, F., Sharmin, E., (Eds). Polyurethane, Croatia: InTech, (2012) 447-470.
- Gurau, V.S., Sandhu, S.S. (2018). Optimization and characterization of biodiesel production from India originated bitter apricot kernel oil, J. Sci. Ind. Res., 77: 345-348.
- Priyadarshi, R., Sauraj, Kumar, B., Deeba, F., Kulshreshtha, A., Negi, Y.S. (2018). Chitosan films incorporated with Apricot (Prunus armeniaca) kernel essential oil as active food packaging material, Food Hydrocoll., 85: 158-166.
- Chung, H., Kim, J-Y. (2014). Antimicrobial activity of β-cd finished and apricot kernel oil applied fabrics, Fibers Polym., 15(5): 924-931.
- Grenier, S., Sandig, M., Mequanint, K. (2007). Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells, J. Biomed. Mater. Res.,82A(4): 802-809.
- Wendels, S., Avèrous, L. (2021). Biobased polyurethanes for biomedical applications, Bioact. Mater., 6: 1083-1106.
- Çalıkoğlu, Y. (2017). New polyurethane synthesis and characterization from epoxidized soybean oil by ring-opening polyols with thioglycolic acid and thioglycolic acid methyl ester, MSc. Thesis, Sakarya University, Sakarya.