Research Article
BibTex RIS Cite

The Role of CFD Technique in the Effect of Baffle Blocks on Flow Dynamics

Year 2024, Volume: 5 Issue: 2, 70 - 76, 30.12.2024
https://doi.org/10.46572/naturengs.1592272

Abstract

A flow with a high amount of hydraulic energy causes high velocities in the flow while passing downstream of the water structure, thus creating high pressure and friction conditions. As a result, problems such as erosion, abrasion, and cavitation may occur on the water structure or downstream. Not taking precautions causes the water structure to be destroyed completely or the surrounding facilities and structures to suffer serious damage. Energy-dissipating structures are constructed in field applications to bypass such negative situations. Blocks placed especially on chute channels or inside stilling basins are quite effective in dissipating the energy of the flow. These blocks dissipate the energy of the flow by creating turbulence inside. Sometimes the flow hits the blocks, and sometimes the blocks separate the flow, creating turbulence. The aim is to reduce the supercritical velocities to subcritical. It can only be achieved by providing a hydraulic jump. Within the scope of this study, a T-shaped block that can be used in the stilling basins was designed. Such a block type was preferred to increase the surface areas of the flow hitting the blocks and thus to observe the energy-dissipating situation. In the literature, similar block types were used in some previous studies. However, some flow dynamics parts that could not be measured experimentally were missing. Therefore, this deficiency was tried to be eliminated by modeling channel and block structures in a digital environment using today's computer and software technology. Firstly, this block type was modeled in a digital environment as a single-row and double-row block array, and energy-dissipating situations were observed. For this purpose, Ansys-Fluent software, which is widely used in Computational Fluid Dynamics (CFD), was preferred. The created model was designed in 3D and numerical solutions were obtained. According to the results of the study, the turbulence values effective in energy-dissipating were easily obtained. In addition, it was observed that the single-row block array dissipates more energy in the digital environment at a lower cost. Before moving on to field applications of this study, it can be said that it will be an important base in determining the flow-block interactions that cannot be measured experimentally.

References

  • Yalçın, O., (1967). Barajlarda Enerji Kırıcı Tesislerin Projelendirilmesi. TC Enerji ve Tabii Kaynaklar Bakanlığı Devlet Su İşleri Genel Müdürlüğü Barajlar ve Hidroelektrik Sanraller Dairesi Başkanlığı, Ankara, 23s.
  • Blaisdell, F. W. (1948). Development and hydraulic design, Saint Anthony Falls stilling basin. Transactions of the American Society of Civil Engineers, 113(1), 483-520.
  • Basco, D. R., & Adams, J. R. (1971). Drag forces on baffle blocks in hydraulic jumps. Journal of the Hydraulics Division, 97(12), 2023-2035.
  • Mohamed Ali, H. S. (1991). Effect of roughened-bed stilling basin on length of rectangular hydraulic jump. Journal of Hydraulic Engineering, 117(1), 83-93.
  • Rajaratnam, N., & Hurtig, K. I. (2000). Screen-type energy dissipator for hydraulic structures. Journal of hydraulic engineering, 126(4), 310-312.
  • Çakir, P. I. N. A. R. (2003). Experimental investigation of energy dissipation through screens. Master Thesis Ankara.
  • Aydoğdu, M., & Dursun, Ö. F. (2020). Şüt Kanalları Üzerine Yerleştirilen Blokların Enerji Sönümlenme Etkilerinin Araştırılması. Su Kaynakları, 5(2), 34-39.
  • Aydoğdu, M. (2024). Testing the Reliability of Numerical Model Studies for a Broad-Crested Weir. Türk Doğa ve Fen Dergisi, 13(3), 73-81.
  • Gül, E., Kılıç, Z., İkincioğulları, E., & Aydın, M. C. (2024). Investigation of the effect of variable-sized energy dissipating blocks on sluice gate performance. Water SA, 50(1), 92-105.
  • Ikinciogullari, E. (2023). Stepped spillway design for energy dissipation. Water Supply, 23(2), 749-763.
  • Sibale, D., Adongo, T. A., Umkiza, E., Ntole, R., Chikavumbwa, S., Bwambale, E., & Jeremaiho, Z. (2023). Review of hydraulic performance of open‐channel flow‐measuring flumes. Acta hydrotechnica, 36(64), 31-55.
  • Xiong, W., Cai, C. S., Kong, B., & Kong, X. (2016). CFD simulations and analyses for bridge-scour development using a dynamic-mesh updating technique. Journal of computing in civil engineering, 30(1), 04014121.
  • Aydın, M. C., İkincioğulları, E., & Emiroğlu, M. E. (2018). Şütlerdeki Enerji Kırıcı Blokların Akımın Hidrolik Karakteristikleri Üzerine Etkisinin Sayısal Analizi. Su Kaynakları, 3(1), 9-15.
  • Peterka, A. J. (1964). Hydraulic design of stilling basins and energy dissipators (No. 25). United States Department of the Interior, Bureau of Reclamation.
  • Niyazi, H., Yaban, H., & Demirel, E. (2022). Structure and dynamics of the turbulent flow through a central baffle. Flow Measurement and Instrumentation, 88, 102248.
  • Hinze, 1975 J.O. Hinze Turbulence McGraw-Hill Inc, New York (1975)
  • Launder, B. E., & Spalding, D. B. (1983). The numerical computation of turbulent flows. In Numerical prediction of flow, heat transfer, turbulence and combustion (pp. 96-116). Pergamon.
  • Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), 201-225.
  • Kaya, N. (2003). Enerji kırıcı havuzlarda farklı tip enerji kırıcı blokların enerji sönümleme oranlarının incelenmesi.
Year 2024, Volume: 5 Issue: 2, 70 - 76, 30.12.2024
https://doi.org/10.46572/naturengs.1592272

Abstract

References

  • Yalçın, O., (1967). Barajlarda Enerji Kırıcı Tesislerin Projelendirilmesi. TC Enerji ve Tabii Kaynaklar Bakanlığı Devlet Su İşleri Genel Müdürlüğü Barajlar ve Hidroelektrik Sanraller Dairesi Başkanlığı, Ankara, 23s.
  • Blaisdell, F. W. (1948). Development and hydraulic design, Saint Anthony Falls stilling basin. Transactions of the American Society of Civil Engineers, 113(1), 483-520.
  • Basco, D. R., & Adams, J. R. (1971). Drag forces on baffle blocks in hydraulic jumps. Journal of the Hydraulics Division, 97(12), 2023-2035.
  • Mohamed Ali, H. S. (1991). Effect of roughened-bed stilling basin on length of rectangular hydraulic jump. Journal of Hydraulic Engineering, 117(1), 83-93.
  • Rajaratnam, N., & Hurtig, K. I. (2000). Screen-type energy dissipator for hydraulic structures. Journal of hydraulic engineering, 126(4), 310-312.
  • Çakir, P. I. N. A. R. (2003). Experimental investigation of energy dissipation through screens. Master Thesis Ankara.
  • Aydoğdu, M., & Dursun, Ö. F. (2020). Şüt Kanalları Üzerine Yerleştirilen Blokların Enerji Sönümlenme Etkilerinin Araştırılması. Su Kaynakları, 5(2), 34-39.
  • Aydoğdu, M. (2024). Testing the Reliability of Numerical Model Studies for a Broad-Crested Weir. Türk Doğa ve Fen Dergisi, 13(3), 73-81.
  • Gül, E., Kılıç, Z., İkincioğulları, E., & Aydın, M. C. (2024). Investigation of the effect of variable-sized energy dissipating blocks on sluice gate performance. Water SA, 50(1), 92-105.
  • Ikinciogullari, E. (2023). Stepped spillway design for energy dissipation. Water Supply, 23(2), 749-763.
  • Sibale, D., Adongo, T. A., Umkiza, E., Ntole, R., Chikavumbwa, S., Bwambale, E., & Jeremaiho, Z. (2023). Review of hydraulic performance of open‐channel flow‐measuring flumes. Acta hydrotechnica, 36(64), 31-55.
  • Xiong, W., Cai, C. S., Kong, B., & Kong, X. (2016). CFD simulations and analyses for bridge-scour development using a dynamic-mesh updating technique. Journal of computing in civil engineering, 30(1), 04014121.
  • Aydın, M. C., İkincioğulları, E., & Emiroğlu, M. E. (2018). Şütlerdeki Enerji Kırıcı Blokların Akımın Hidrolik Karakteristikleri Üzerine Etkisinin Sayısal Analizi. Su Kaynakları, 3(1), 9-15.
  • Peterka, A. J. (1964). Hydraulic design of stilling basins and energy dissipators (No. 25). United States Department of the Interior, Bureau of Reclamation.
  • Niyazi, H., Yaban, H., & Demirel, E. (2022). Structure and dynamics of the turbulent flow through a central baffle. Flow Measurement and Instrumentation, 88, 102248.
  • Hinze, 1975 J.O. Hinze Turbulence McGraw-Hill Inc, New York (1975)
  • Launder, B. E., & Spalding, D. B. (1983). The numerical computation of turbulent flows. In Numerical prediction of flow, heat transfer, turbulence and combustion (pp. 96-116). Pergamon.
  • Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), 201-225.
  • Kaya, N. (2003). Enerji kırıcı havuzlarda farklı tip enerji kırıcı blokların enerji sönümleme oranlarının incelenmesi.
There are 19 citations in total.

Details

Primary Language English
Subjects Numerical Modelization in Civil Engineering
Journal Section Research Articles
Authors

Mahmut Aydoğdu 0000-0002-7339-2442

Publication Date December 30, 2024
Submission Date November 27, 2024
Acceptance Date December 25, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Aydoğdu, M. (2024). The Role of CFD Technique in the Effect of Baffle Blocks on Flow Dynamics. NATURENGS, 5(2), 70-76. https://doi.org/10.46572/naturengs.1592272