Year 2019, Volume 4 , Issue 1, Pages 42 - 54 2019-01-31

Sex Determination in Green Turtle Hatchlings: Geometric Morphometry and Molecular Sex Markers

Bektaş SÖNMEZ [1] , Efkan BAĞDA [2] , Onur CANDAN [3] , Hasan Emre YİLMAZ [4]

Determination of the sex ratio in sea turtle population is one of the most important parameters for the conservation and management of the species. We aimed to the test usability of the more than one approaches that identify the sex of hatchlings with alternative non-invasive methods. Geometric morphometry and molecular sex marker were used to indicate difference between the sexes in the green sea turtle (Chelonia mydas) hatchlings which sexes were previously determined by gonad histology. A total of 60 landmarks were identified from three body parts (carapace, plastron and tail) for geometric morphometry. No sex specific difference was found in these three body parts. Furthermore, we analyzed a total of 55 different oligonucleotide combinations using sex-based pool strategy but found no difference. These two techniques are insufficient for sex determination in the green turtle hatchlings. A relatively small number of the primer combinations and male hatchlings used to identify sex of C. mydas appears to be a disadvantage. In order to obtain clearer results with geometric morphometric and molecular sex markers, it is recommended to compare sexes in laboratory conditions with constant temperature.
Geometric morphometry, AFLP, Sex determination, Green Turtle, Samandağ, Sugözü Beaches
  • Berry, J. F. & Shine, R. (1980). Sexual size dimorphism and sexual selection in turtles (Order: Testudines). Oecologia, 44, 185-191.
  • Bookstein, F. L. (1992). Morphometric tools for landmark data. Cambridge University Press.
  • Bull, J. J. (1980). Sex determination in reptiles. The Quarterly Review of Biology, 55, 3-21.
  • Bulmer, M. (1994). Theoretical evolutionary ecology. Sinauer Associates Inc. Sunderland, Massachusetts.
  • Cardini, A. & Elton, S. (2007). Sample size and sampling error in geometric morphometric studies of size and shape. Zoomorphology, 126, 121-134.
  • Ceballos, C. P. & Valenzuela, N. (2011). The role of sex-specific plasticity in shaping sexual dimorphism in a long-lived vertebrate, the snapping turtle Chelydra serpentina. Evolutionary Biology, 38, 163–181.
  • Delgado, C., Canario, A. V. M. & Dellinger, T. (2010). Sex ratios of loggerhead sea turtles Caretta caretta during the juvenile pelagic stage. Marine Biology, 157, 979–990.
  • Demas, S., Duronslet, M., Wachtel, S., Caillouet, C. & Nakamura, D. (1990). Sex specific DNA in reptiles with temperature sex determination. Journal of Experimental Zoology, 253, 319–324.
  • Felip, A., Young, W. P., Wheeler, P. A. & Thorgaard, G. H. (2005). An AFLP-based approach for the identification of sex-linked markers in rainbow trout (Oncorhynchus mykiss). Aquaculture, 247, 35– 43.
  • Ferreira Junior, P. D., Treichei, R. L., Scaramussa, T. L. & Scalfoni, J. T. (2011). Morphometric pattern in Caretta caretta (Linnaeus, 1758) (Cheloniidae) hatchlings from nests with different embryo development rates. Brazilian Journal of Biology, 71(1), 151-156.
  • Glen, F., Broderick, A. C., Godley, B. J. & Hays, G. C. (2003). Incubation environment affects phenotype of naturally incubated green turtle hatchlings. --- Journal of the Marine Biological Association of the UK, 83, 1183-1186.
  • Godfrey, M. H. & Mrosovsky, N. (2006). Pivotal temperature for green sea turtles, Chelonia mydas, nesting in Suriname. Herpetological Journal, 16, 55-61.
  • Griffiths, R. & Orr, K. (1999). The use of amplified fragment length polymorphism (AFLP) in the isolation of sex-specific markers. Molecular Ecology, 8, 671-674.
  • Griffiths, R., Orr, K. J., Adam, A. & Barber, I. (2000). DNA sex identification in the three-spined stickleback. Journal of Fish Biology, 57, 1331–1334.
  • Gross, T. S., Crain, D. A., Bjorndal, K. A., Bolten, A. B. & Carthy, R. R. (1995). Identification of sex in hatchling loggerhead turtles (Caretta caretta) by analysis of steroid concentrations in chorioallantoic/amniotic fluid. General and Comparative Endocrinology, 99, 204-210.
  • Hernández-Echeagaray, O. E., Hernández-Cornejo, R., Harfush-Meléndez, M. & García-Gasca, A. (2012). Evaluation of sex ratios of the olive ridley sea turtle (Lepidochelys olivacea) on the arribada nesting beach, La Escobilla, Mexico. Marine Turtle Newsletter 133, 12-16.
  • Hillis, D. M. & Moritz, C. (1990). Moleculer systemetics. Sinauer Associates Inc. Sunderland, Massachusetts. Ikonomopoulou, M. P., Aland, R. C., Ibrahim, K., Gosden, E. & Whittier, J. M. (2012). Quantitative sex identification of hatchling green sea turtles. Journal of Herpetology, 46(3), 331-332.
  • Innan, H., Terauchi, R., Kahl, G. & Tajima, F. (1999). A method for estimating nucleotide diversity from AFLP data. Genetics, 151:1157-1164.
  • Janzen, F. J. & Krenz, J. G. (2004). Phylogenetics: which was first, TSD or GSD? In: Valenzuela, N. & Lance V. A. (Eds.). Temperature dependent sex determination in vertebrates: 212-230. Washington DC: Smithsonian Institution Press.
  • Janzen, F. J. (1994). Climate change and temperature-dependent sex determination in reptiles. Proceeding National Academy Science USA, 91, 7487-7490.
  • Kılıç, Ç. & Candan, O. (2014). Hatchling sex ratio, body weight and nest parameters for Chelonia mydas nesting on Sugözü Beaches (Turkey). Animal Biodiversity and Conservation, 37, 177–182.
  • Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11:353-357.
  • Li, Y., Byrne, K., Miggiano, E., Whan, V., Moore, S., Keys, S., Crocos, P., Preston, N. & Lehnert, S. (2002). Genetic mapping of the Kuruma Prawn Penaeus japonicus using AFLP Markers. Aquaculture, 62091,1-14.
  • Lubiana, A. & Ferreira-Junior, P. D. (2009). Pivotal temperature and sexual dimorphism of Podocnemis expansa hatchlings (Testudines: Podocnemididae) from Banana Island, Brazil. Zoologia, 26: 527-533.
  • Maxwell, J. A., Motara, M. A. & Frank, G. H. (1988). A micro-environmental study of the effects of temperature on the sex ratios of the loggerhead turtle, Caretta caretta, from Tongaland, Natal. South African Journal of Zoology, 23, 342 350.
  • McCoy, C. J., Vogt, R. C. & Censky, E. J. (1983). Temperature-controlled sex determination in the sea turtle Lepidochelys olivacea. Journal of Herpetology, 17, 404-406.
  • Merchant-Larios, H., Villalpando-Fierro, I. & Centeno-Urruiza, B. (1989). Gonadal morpho-genesis under controlled temperature in the sea turtle. Herpetological Monograph, 3, 43-61.
  • Michel-Morfin, J. E., Gomez Munoz, V. & Navarro Rodriguez, C. (2001). Morphometric model for sex assessment in hatchling olive ridley sea turtles. Chelonian Conservation and Biology, 4, 53-58.
  • Mittwoch, U. (2000). Three thousand years of questioning sex determination. Cytogenetics and Cell Genetics, 91, 186–191.
  • Mrosovsky, N. & Pieau, C. (1991). Transitional range of temperature, pivotal temperatures and thermosensitive stages for sex determination in reptiles. Amphibia- Reptilia, 12, I69 179.
  • Mrosovsky, N. (1994). Sex ratios of sea turtles. Journal of Experimental Zoology, 270, 16–27.
  • Mueller, U. G. & Wolfenbarger, L. L. (1999). AFLP genotyping and finger printing. Tree, 14(10), 389-394.
  • Organ, C. L. & Janes, D. E. (2008). Evolution of sex chromosomes in Sauropsida. Integrative and Comparative Biology 48, 512–519.
  • Quinn, A. E, Georges, A., Sarre, S. D., Guarino, F., Ezaz, T. & Graves, J. A. M. (2007). Temperature sex reversal implies sex gene dosage in a reptile. Science, 316, 411-411.
  • Rovatsos, M., Praschag, P., Fritz, U. & Kratochvíl, L. (2017). Stable Cretaceous sex chromosomes enable molecular sexing in softshell turtles (Testudines: Trionychidae). Scientific Reports, 7:42150, Doi: 10.1038/srep42150.
  • Reece, S. E., Broderick, A. C., Godley, B. J., & West, S. A. (2002). The effects of incubation environment, sex and pedigree on the hatchling phenotype in a natural population of loggerhead turtles. Evolutionary Ecology Research, 4, 737 – 748.
  • Rohlf, F. J. & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Biology, 39, 40-59.
  • Rohlf, F. J. (2015). The tps series of software. Hystrix, Italian Journal of Mammalogy, 26, 9-12.
  • Sarre, S. D., Georges, A. & Quinn, A. (2004). The ends of a continuum: genetic and temperature-dependent sex determination in reptiles. Bioassays, 26, 639-645.
  • Sönmez, B., Turan, C., Yalçin Özdilek, Ş. & Turan, F. (2016). Sex determination of green sea turtle (Chelonia mydas) hatchlings on the bases of morphological characters. Journal of Black Sea/Mediterranean Environment 22(1), 93-102.
  • Türkecan, O. (2010) Yeşil deniz kaplumbağalarının (Chelonia mydas, Linnaeus, 1758) biyo-ekolojik özellikleri üzerine incelemeler. Hacettepe University, Ph.D. Thesis, 177 pp [In Turkish with English summary]
  • Valenzuela, N., Adams, D. C., Bowden, R. M., & Gauger, A.C. (2004). Geometric morphometric sex estimation for hatchling turtles: a powerful alternative for detecting subtle sexual shape dimorphism. Copeia, 4, 735-742.
  • Van Der Heiden, A. M., Briseno, R. & Rios-Olmeda, D. (1985). A simplified method for determining sex in hatchling sea turtles. Copeia, 1985, 779-782.
  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van De Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., & Zabeau, M. (1995). AFLP: a new technique for DNA finger printing. Nucleic Acids Research, 23, 4407- 4414.
  • Warner, D. A. (2011). Sex determination in Reptiles. In: Norris D. O & Lopez K. H. (Eds). Hormones and Reproduction of Vertebrates: 1-38. Volume 3-Reptiles, Elsevier.
  • Wuertz, S., Gaillard, S., Barbisan, F., Carle, S., Congiu, L., Forlani, A., Aubert, J., Kirschbaum, F., Tosi, E., Zane, L. & Grillasca, J. P. (2006). Extensive screening of sturgeon genomes by random screening techniques revealed no sex-specific marker. Aquaculture, 258, 685–688.
  • Wyneken, J., Epperly, S. P., Crowder, L. B., Vaughan, J. & Esper, K. B. (2007). Determining sex in post-hatchling loggerhead sea turtles using multiple gonadal and accessory duct characteristics. Herpetologica, 63,19-30.
  • Yalçin Özdilek, Ş., Sönmez, B. & Kaska, Y. (2016). Sex ratio estimations of Chelonia mydas hatchlings at Samandağ Beach, Turkey. Turkish Journal of Zoology, 40, 552-560.
  • Yntema, C. L. & Mrosovsky, N. (1980). Sexual differentiation in hatching loggerheads (Caretta caretta) incubated at different controlled temperatures. Herpetologica, 36, 33-36.
Primary Language en
Subjects Science
Journal Section 4

Author: Bektaş SÖNMEZ

Author: Efkan BAĞDA

Author: Onur CANDAN

Author: Hasan Emre YİLMAZ


Application Date : November 14, 2018
Acceptance Date : January 21, 2019
Publication Date : January 31, 2019

APA Sönmez, B , Bağda, E , Candan, O , Yilmaz, H . (2019). Sex Determination in Green Turtle Hatchlings: Geometric Morphometry and Molecular Sex Markers . Natural and Engineering Sciences , 4 (1) , 42-54 . DOI: 10.28978/nesciences.522623