Research Article
BibTex RIS Cite
Year 2024, Volume: 9 Issue: 1, 72 - 83, 30.05.2024
https://doi.org/10.28978/nesciences.1491795

Abstract

References

  • Arias-Rodriguez, L.F., Duan, Z., Díaz-Torres, J.D.J., Basilio Hazas, M., Huang, J., Kumar, B.U., & Disse, M. (2021). Integration of remote sensing and Mexican water quality monitoring system using an extreme learning machine. Sensors, 21(12), 4118. https://doi.org/10.3390/s21124118
  • Arora, G. (2024). Desing of VLSI Architecture for a flexible testbed of Artificial Neural Network for training and testing on FPGA. Journal of VLSI Circuits and Systems, 6(1), 30-35.
  • Brahmaiah, B., Vivek, G.V., Gopal, B.S.V., Sudheer, B., & Prem, D. (2021). Monitoring And Alerting System based on Air, Water and Garbage Levels Using Esp8266. International Journal of Communication and Computer Technologies (IJCCTS), 9(2), 31-36.
  • De Camargo, E.T., Spanhol, F.A., Slongo, J.S., da Silva, M.V.R., Pazinato, J., de Lima Lobo, A.V., & Martins, L.D. (2023). Low-cost water quality sensors for IoT: A systematic review. Sensors, 23(9), 4424. https://doi.org/10.3390/s23094424
  • Elsherbiny, O., Zhou, L., He, Y., & Qiu, Z. (2022). A novel hybrid deep network for diagnosing water status in wheat crop using IoT-based multimodal data. Computers and Electronics in Agriculture, 203, 107453. https://doi.org/10.1016/j.compag.2022.107453
  • Fortuna, A.M., Starks, P.J., Moriasi, D.N., & Steiner, J.L. (2023). Use of archived data to derive soil health and water quality indicators for monitoring shifts in natural resources. Journal of Environmental Quality, 52(3), 523-536.
  • Hemdan, E.E.D., Essa, Y.M., Shouman, M., El-Sayed, A., & Moustafa, A.N. (2023). An efficient IoT-based smart water quality monitoring system. Multimedia Tools and Applications, 82(19), 28827-28851.
  • Hlordzi, V., Kuebutornye, F.K., Afriyie, G., Abarike, E.D., Lu, Y., Chi, S., & Anokyewaa, M.A. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture reports, 18, 100503. https://doi.org/10.1016/j.aqrep.2020.100503
  • Hojjati-Najafabadi, A., Mansoorianfar, M., Liang, T., Shahin, K., & Karimi-Maleh, H. (2022). A review on magnetic sensors for monitoring of hazardous pollutants in water resources. Science of The Total Environment, 824, 153844. https://doi.org/10.1016/j.scitotenv.2022.153844
  • Jan, F., Min-Allah, N., & Düştegör, D. (2021). Iot based smart water quality monitoring: Recent techniques, trends and challenges for domestic applications. Water, 13(13), 1729. https://doi.org/10.3390/w13131729
  • Jelena, T., & Srđan, K. (2023). Smart Mining: Joint Model for Parametrization of Coal Excavation Process Based on Artificial Neural Networks. Arhiv za tehničke nauke, 2(29), 11-22.
  • Jung, M., Arnell, A., De Lamo, X., García-Rangel, S., Lewis, M., Mark, J., & Visconti, P. (2021). Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology & Evolution, 5(11), 1499-1509.
  • Laith, A.A.R., Ahmed, A.A., & Ali, K.L.A. (2023). IoT Cloud System Based Dual Axis Solar Tracker Using Arduino. Journal of Internet Services and Information Security, 13, 193-202.
  • Lakshmikantha, V., Hiriyannagowda, A., Manjunath, A., Patted, A., Basavaiah, J., & Anthony, A.A. (2021). IoT-based smart water quality monitoring system. Global Transitions Proceedings, 2(2), 181-186.
  • Mazhar, M.A., Khan, N.A., Ahmed, S., Khan, A.H., Hussain, A., Changani, F., & Vambol, V. (2020). Chlorination disinfection by-products in municipal drinking water–a review. Journal of Cleaner Production, 273, 123159. https://doi.org/10.1016/j.jclepro.2020.123159
  • Muralidharan, J. (2020). A Air Cavity Based Multi Frequency Resonator for Remote Correspondence Applications. National Journal of Antennas and Propagation (NJAP), 2(2), 21-26.
  • Nižetić, S., Šolić, P., Gonzalez-De, D.L.D.I., & Patrono, L. (2020). Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future. Journal of cleaner production, 274, 122877. https://doi.org/10.1016/j.jclepro.2020.122877
  • Priyanka, J., Ramya, M., & Alagappan, M. (2023). IoT Integrated Accelerometer Design and Simulation for Smart Helmets. Indian Journal of Information Sources and Services, 13(2), 64–67.
  • Ramachandran, V., Ramalakshmi, R., Kavin, B.P., Hussain, I., Almaliki, A.H., Almaliki, A.A., & Hussein, E.E. (2022). Exploiting IoT and its enabled technologies for irrigation needs in agriculture. Water, 14(5), 719. https://doi.org/10.3390/w14050719
  • Robles, T., Alcarria, R., De Andrés, D.M., De la Cruz, M.N., Calero, R., Iglesias, S., & Lopez, M. (2015). An IoT based reference architecture for smart water management processes. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 6(1), 4-23.
  • Roy, S.K., Misra, S., Raghuwanshi, N.S., & Das, S.K. (2020). AgriSens: IoT-based dynamic irrigation scheduling system for water management of irrigated crops. IEEE Internet of Things Journal, 8(6), 5023-5030.
  • Sagan, V., Peterson, K.T., Maimaitijiang, M., Sidike, P., Sloan, J., Greeling, B.A., & Adams, C. (2020). Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Science Reviews, 205, 103187. https://doi.org/10.1016/j.earscirev.2020.103187
  • Salam, A., & Salam, A. (2020). Internet of things in water management and treatment. Internet of things for sustainable community development: Wireless communications, sensing, and systems, 273-298.
  • Scanlon, B.R., Fakhreddine, S., Rateb, A., de Graaf, I., Famiglietti, J., Gleeson, T., & Zheng, C. (2023). Global water resources and the role of groundwater in a resilient water future. Nature Reviews Earth & Environment, 4(2), 87-101.
  • Semenza, J.C. (2020). Cascading risks of waterborne diseases from climate change. Nature Immunology, 21(5), 484-487.
  • Singh, M., & Ahmed, S. (2021). IoT based smart water management systems: A systematic review. Materials Today: Proceedings, 46, 5211-5218.
  • Singh, S.C., ElKabbash, M., Li, Z., Li, X., Regmi, B., Madsen, M., & Guo, C. (2020). Solar-trackable super-wicking black metal panel for photothermal water sanitation. Nature Sustainability, 3(11), 938-946.
  • Van Vliet, M.T., Jones, E.R., Flörke, M., Franssen, W.H., Hanasaki, N., Wada, Y., & Yearsley, J.R. (2021). Global water scarcity, including surface water quality and expansions of clean water technologies. Environmental Research Letters, 16(2), 024020. https://doi.org/10.1088/1748-9326/abbfc3

Utilizing Deep Learning and the Internet of Things to Monitor the Health of Aquatic Ecosystems to Conserve Biodiversity

Year 2024, Volume: 9 Issue: 1, 72 - 83, 30.05.2024
https://doi.org/10.28978/nesciences.1491795

Abstract

The decline in water conditions contributes to the crisis in clean water biodiversity. The interactions between water conditions indicators and the correlations among these variables and taxonomic groupings are intricate in their impact on biodiversity. However, since there are just a few kinds of Internet of Things (IoT) that are accessible to purchase, many chemical and biological measurements still need laboratory studies. The newest progress in Deep Learning and the IoT allows for the use of this method in the real-time surveillance of water quality, therefore contributing to preserving biodiversity. This paper presents a thorough examination of the scientific literature about the water quality factors that have a significant influence on the variety of freshwater ecosystems. It selected the ten most crucial water quality criteria. The connections between the quantifiable and valuable aspects of the IoT are assessed using a Generalized Regression-based Neural Networks (G-RNN) framework and a multi-variational polynomial regression framework. These models depend on historical data from the monitoring of water quality. The projected findings in an urbanized river were validated using a combination of traditional field water testing, in-lab studies, and the created IoT-depend water condition management system. The G-RNN effectively differentiates abnormal increases in variables from typical scenarios. The assessment coefficients for the system for degree 8 are as follows: 0.87, 0.73, 0.89, and 0.79 for N-O3-N, BO-D5, P-O4, and N-H3-N. The suggested methods and prototypes were verified against laboratory findings to assess their efficacy and effectiveness. The general efficacy was deemed suitable, with most forecasting mistakes smaller than 0.3 mg/L. This validation offers valuable insights into IoT methods' usage in pollutants released observation and additional water quality regulating usage, specifically for freshwater biodiversity preservation.

References

  • Arias-Rodriguez, L.F., Duan, Z., Díaz-Torres, J.D.J., Basilio Hazas, M., Huang, J., Kumar, B.U., & Disse, M. (2021). Integration of remote sensing and Mexican water quality monitoring system using an extreme learning machine. Sensors, 21(12), 4118. https://doi.org/10.3390/s21124118
  • Arora, G. (2024). Desing of VLSI Architecture for a flexible testbed of Artificial Neural Network for training and testing on FPGA. Journal of VLSI Circuits and Systems, 6(1), 30-35.
  • Brahmaiah, B., Vivek, G.V., Gopal, B.S.V., Sudheer, B., & Prem, D. (2021). Monitoring And Alerting System based on Air, Water and Garbage Levels Using Esp8266. International Journal of Communication and Computer Technologies (IJCCTS), 9(2), 31-36.
  • De Camargo, E.T., Spanhol, F.A., Slongo, J.S., da Silva, M.V.R., Pazinato, J., de Lima Lobo, A.V., & Martins, L.D. (2023). Low-cost water quality sensors for IoT: A systematic review. Sensors, 23(9), 4424. https://doi.org/10.3390/s23094424
  • Elsherbiny, O., Zhou, L., He, Y., & Qiu, Z. (2022). A novel hybrid deep network for diagnosing water status in wheat crop using IoT-based multimodal data. Computers and Electronics in Agriculture, 203, 107453. https://doi.org/10.1016/j.compag.2022.107453
  • Fortuna, A.M., Starks, P.J., Moriasi, D.N., & Steiner, J.L. (2023). Use of archived data to derive soil health and water quality indicators for monitoring shifts in natural resources. Journal of Environmental Quality, 52(3), 523-536.
  • Hemdan, E.E.D., Essa, Y.M., Shouman, M., El-Sayed, A., & Moustafa, A.N. (2023). An efficient IoT-based smart water quality monitoring system. Multimedia Tools and Applications, 82(19), 28827-28851.
  • Hlordzi, V., Kuebutornye, F.K., Afriyie, G., Abarike, E.D., Lu, Y., Chi, S., & Anokyewaa, M.A. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture reports, 18, 100503. https://doi.org/10.1016/j.aqrep.2020.100503
  • Hojjati-Najafabadi, A., Mansoorianfar, M., Liang, T., Shahin, K., & Karimi-Maleh, H. (2022). A review on magnetic sensors for monitoring of hazardous pollutants in water resources. Science of The Total Environment, 824, 153844. https://doi.org/10.1016/j.scitotenv.2022.153844
  • Jan, F., Min-Allah, N., & Düştegör, D. (2021). Iot based smart water quality monitoring: Recent techniques, trends and challenges for domestic applications. Water, 13(13), 1729. https://doi.org/10.3390/w13131729
  • Jelena, T., & Srđan, K. (2023). Smart Mining: Joint Model for Parametrization of Coal Excavation Process Based on Artificial Neural Networks. Arhiv za tehničke nauke, 2(29), 11-22.
  • Jung, M., Arnell, A., De Lamo, X., García-Rangel, S., Lewis, M., Mark, J., & Visconti, P. (2021). Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology & Evolution, 5(11), 1499-1509.
  • Laith, A.A.R., Ahmed, A.A., & Ali, K.L.A. (2023). IoT Cloud System Based Dual Axis Solar Tracker Using Arduino. Journal of Internet Services and Information Security, 13, 193-202.
  • Lakshmikantha, V., Hiriyannagowda, A., Manjunath, A., Patted, A., Basavaiah, J., & Anthony, A.A. (2021). IoT-based smart water quality monitoring system. Global Transitions Proceedings, 2(2), 181-186.
  • Mazhar, M.A., Khan, N.A., Ahmed, S., Khan, A.H., Hussain, A., Changani, F., & Vambol, V. (2020). Chlorination disinfection by-products in municipal drinking water–a review. Journal of Cleaner Production, 273, 123159. https://doi.org/10.1016/j.jclepro.2020.123159
  • Muralidharan, J. (2020). A Air Cavity Based Multi Frequency Resonator for Remote Correspondence Applications. National Journal of Antennas and Propagation (NJAP), 2(2), 21-26.
  • Nižetić, S., Šolić, P., Gonzalez-De, D.L.D.I., & Patrono, L. (2020). Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future. Journal of cleaner production, 274, 122877. https://doi.org/10.1016/j.jclepro.2020.122877
  • Priyanka, J., Ramya, M., & Alagappan, M. (2023). IoT Integrated Accelerometer Design and Simulation for Smart Helmets. Indian Journal of Information Sources and Services, 13(2), 64–67.
  • Ramachandran, V., Ramalakshmi, R., Kavin, B.P., Hussain, I., Almaliki, A.H., Almaliki, A.A., & Hussein, E.E. (2022). Exploiting IoT and its enabled technologies for irrigation needs in agriculture. Water, 14(5), 719. https://doi.org/10.3390/w14050719
  • Robles, T., Alcarria, R., De Andrés, D.M., De la Cruz, M.N., Calero, R., Iglesias, S., & Lopez, M. (2015). An IoT based reference architecture for smart water management processes. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 6(1), 4-23.
  • Roy, S.K., Misra, S., Raghuwanshi, N.S., & Das, S.K. (2020). AgriSens: IoT-based dynamic irrigation scheduling system for water management of irrigated crops. IEEE Internet of Things Journal, 8(6), 5023-5030.
  • Sagan, V., Peterson, K.T., Maimaitijiang, M., Sidike, P., Sloan, J., Greeling, B.A., & Adams, C. (2020). Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Science Reviews, 205, 103187. https://doi.org/10.1016/j.earscirev.2020.103187
  • Salam, A., & Salam, A. (2020). Internet of things in water management and treatment. Internet of things for sustainable community development: Wireless communications, sensing, and systems, 273-298.
  • Scanlon, B.R., Fakhreddine, S., Rateb, A., de Graaf, I., Famiglietti, J., Gleeson, T., & Zheng, C. (2023). Global water resources and the role of groundwater in a resilient water future. Nature Reviews Earth & Environment, 4(2), 87-101.
  • Semenza, J.C. (2020). Cascading risks of waterborne diseases from climate change. Nature Immunology, 21(5), 484-487.
  • Singh, M., & Ahmed, S. (2021). IoT based smart water management systems: A systematic review. Materials Today: Proceedings, 46, 5211-5218.
  • Singh, S.C., ElKabbash, M., Li, Z., Li, X., Regmi, B., Madsen, M., & Guo, C. (2020). Solar-trackable super-wicking black metal panel for photothermal water sanitation. Nature Sustainability, 3(11), 938-946.
  • Van Vliet, M.T., Jones, E.R., Flörke, M., Franssen, W.H., Hanasaki, N., Wada, Y., & Yearsley, J.R. (2021). Global water scarcity, including surface water quality and expansions of clean water technologies. Environmental Research Letters, 16(2), 024020. https://doi.org/10.1088/1748-9326/abbfc3
There are 28 citations in total.

Details

Primary Language English
Subjects Population Ecology
Journal Section Articles
Authors

Bobir A. Odilov This is me 0000-0002-9961-3071

Askariy Madraimov This is me 0009-0000-2238-2888

Otabek Y. Yusupov This is me 0000-0002-8755-8220

Nodir R. Karimov 0000-0001-5127-8713

Rakhima Alimova This is me 0009-0009-9434-9601

Zukhra Z. Yakhshieva This is me 0000-0002-3394-6295

Sherzod A Akhunov This is me 0000-0002-5623-3984

Publication Date May 30, 2024
Submission Date May 29, 2024
Acceptance Date May 29, 2024
Published in Issue Year 2024 Volume: 9 Issue: 1

Cite

APA A. Odilov, B., Madraimov, A., Y. Yusupov, O., R. Karimov, N., et al. (2024). Utilizing Deep Learning and the Internet of Things to Monitor the Health of Aquatic Ecosystems to Conserve Biodiversity. Natural and Engineering Sciences, 9(1), 72-83. https://doi.org/10.28978/nesciences.1491795

Cited By











                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015