Research Article
BibTex RIS Cite

Investigating the Influence of Biochar and Salicylic Acid on Maize (Zea mays L.) Performance and Physiological Responses Under Salinity Stress Conditions

Year 2025, Volume: 10 Issue: 2, 482 - 494, 01.09.2025
https://doi.org/10.28978/nesciences.1733993

Abstract

This study examined the ways in which salicylic acid and biochar can improve maize development in the face of salt stress. Three replicates were used in the factorial, fully randomized design of the greenhouse experiment. For each factor, three levels of treatments were used: biochar (0%, 0.6%, and 1.2%), salicylic acid (0, 0.75, and 1.5 mM), and salinity stress (caused by NaCl at 0, 4, and 8 dS/m). The dried leaves and stems of date palms were used to make the biochar. The findings indicated that, in comparison to the control, salt stress decreased plant height by around 40%, dry weight of the shoot by 60%, dry weight of the roots by 51%, chlorophyll content of leaves by 3%, and grain production by 38%. Notably, the greatest concentrations of biochar (1.2%) & salicylic acid (1.5%) considerably enhanced all growth indices and reduced the activities of peroxidase and catalase enzymes at a salinity index of 4 dS/m, therefore mitigating the negative impacts of salinity. Salicylic acid and biochar together helped sustain elevated levels of the investigated features even in the most extreme salinity levels (8 dS/m) as compared with the treatment absent these additions. To sum up, the results suggest using 1.2% biochar in conjunction with 1.5 mM of salicylic acid to enhance maize growth in circumstances when exposed to mild stress from salinity (4 dS/m).

References

  • Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., & Wessolek, G. (2013). Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202, 183-191. https://doi.org/10.1016/j.geoderma.2013.03.003
  • Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Biochar mitigates salinity stress in potato. Journal of agronomy and crop science, 201(5), 368-378. https://doi.org/10.1111/jac.12132
  • Bogusz, A., & Oleszczuk, P. (2018). Sequential extraction of nickel and zinc in sewage sludge-or biochar/sewage sludge-amended soil. Science of the Total Environment, 636, 927-935. https://doi.org/10.1016/j.scitotenv.2018.04.072
  • Butcher, K., Wick, A. F., DeSutter, T., Chatterjee, A., & Harmon, J. (2018). Corn and soybean yield response to salinity influenced by soil texture. Agronomy Journal, 110(4), 1243-1253. https://doi.org/10.2134/agronj2017.10.0619
  • Calys-Tagoe, E., Sadick, A., Yeboah, E., & Amoah, B. (2019). Biochar effect on maize yield in selected farmers’ fields in the northern and upper east regions of Ghana. Journal of Experimental Agriculture International, 30(6), 1-9. https://doi.org/10.9734/JEAI/2019/44168
  • Cicek, N., & Cakirlar, H. (2002). The effect of salinity on some physiological parameters in two maize cultivars. Bulg. J. plant physiol, 28(1-2), 66-74.
  • Daneshmand, F., Arvin, M. J., Keramat, B., & Momeni, N. (2012). Interactive effects of salt stress and salicylic acid on germination and plant growth parameters of maize (Zea mays L.) under field conditions. Journal of Plant Process and Function, 1(1), 57-70.
  • de Lacerda, C. F., Cambraia, J., Oliva, M. A., Ruiz, H. A., & Prisco, J. T. (2003). Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental botany, 49(2), 107-120. https://doi.org/10.1016/S0098-8472(02)00064-3
  • El-Tayeb, M. A. (2005). Response of barley grains to the interactive e. ect of salinity and salicylic acid. Plant growth regulation, 45(3), 215-224. https://doi.org/10.1007/s10725-005-4928-1
  • Hadwan, M. H., & Khabt, H. (2018). Simple Spectrophotometric Method for Analysis of Serum Catalase Activity. Journal of Clinical & Diagnostic Research, 12(9). https://doi.org/10.7860/JCDR/2018/35014.12011
  • Hussein, Y., Hassan, M. A., Marzouk, E. R., & Ismail, S. A. (2022). Effect of biochar amendment on spinach (Spinacia oleracea L.) growth under salt stress conditions. Sinai Journal of Applied Sciences, 11(5), 891-908. https://dx.doi.org/10.21608/sinjas.2022.148488.1127
  • Hütsch, B. W., Saqib, M., Osthushenrich, T., & Schubert, S. (2014). Invertase activity limits grain yield of maize under salt stress. Journal of Plant Nutrition and Soil Science, 177(2), 278-286. https://doi.org/10.1002/jpln.201300345
  • Jabborova, D., Annapurna, K., Paul, S., Kumar, S., Saad, H. A., Desouky, S., ... & Elkelish, A. (2021). Beneficial features of biochar and arbuscular mycorrhiza for improving spinach plant growth, root morphological traits, physiological properties, and soil enzymatic activities. Journal of Fungi, 7(7), 571. https://doi.org/10.3390/jof7070571
  • Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S. (2015). Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regulation, 76(1), 25-40. https://doi.org/10.1007/s10725-015-0028-z
  • Jiménez-Mejía, R., Medina-Estrada, R. I., Carballar-Hernández, S., Orozco-Mosqueda, M. D. C., Santoyo, G., & Loeza-Lara, P. D. (2022). Teamwork to survive in hostile soils: use of plant growth-promoting bacteria to ameliorate soil salinity stress in crops. Microorganisms, 10(1), 150. https://doi.org/10.3390/microorganisms10010150
  • Jini, D., & Joseph, B. (2017). Salicylic acid mediated salt tolerance at different growth stages of Oryza sativa L. and its effect on salicylic acid biosynthetic pathway genes. Biotechnol Ind J, 13(2), 134.
  • Kamkar, B., Kafi, M., & Mahallati, A. N. (2004). Determination of the most sensitive developmental period of wheat (Triticum aestivum) to salt stress to optimize saline water utilization. Crop Sci. Cong, 6.
  • Kanagala, S., Al Khalaifin, M. H. S. S., Al-Harthi, A. A. R. S., & Al-ahdhami, S. S. A. (2023). Greenhouse Farm Monitoring is Automated with Smart Controls. International Academic Journal of Science and Engineering, 10(1), 27-32. https://doi.org/10.71086/IAJSE/V10I1/IAJSE1005
  • Kanwal, S., Ilyas, N., Shabir, S., Saeed, M., Gul, R., Zahoor, M., ... & Mazhar, R. (2018). Application of biochar in mitigation of negative effects of salinity stress in wheat (Triticum aestivum L.). Journal of Plant Nutrition, 41(4), 526-538. https://doi.org/10.1080/01904167.2017.1392568
  • Katerji, N., Van Hoorn, J. W., Hamdy, A., Karam, F., & Mastrorilli, M. (1996). Effect of salinity on water stress, growth, and yield of maize and sunflower. Agricultural Water Management, 30(3), 237-249. https://doi.org/10.1016/0378-3774(95)01228-1
  • Kaya, C., Ashraf, M., Dikilitas, M., & Tuna, A. L. (2013). Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients-A field trial. Australian Journal of Crop Science, 7(2), 249-254.
  • Khayyat, M., Moradinezhad, F., Safari, N., Nazari, S. F., Saeb, H., & Samadzadeh, A. (2014). Seed germination of basil and cress under NaCl and boron stress. Journal of Plant Nutrition, 37(14), 2281-2290. https://doi.org/10.1080/01904167.2014.920388
  • Kocsis, T., Ringer, M., & Biró, B. (2022). Characteristics and applications of biochar in soil–plant systems: A short review of benefits and potential drawbacks. Applied Sciences, 12(8), 4051. https://doi.org/10.3390/app12084051
  • Li BaoFu, L. B., Xiong HeiGang, X. H., Zhang JianBing, Z. J., & Long Tao, L. T. (2010). Dynamic of soil salt in soil profiles different in cultivation age and its affecting factors.
  • Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current protocols in food analytical chemistry, 1(1), F4-3. https://doi.org/10.1002/0471142913.faf0403s01
  • Mehta, A., & Sharma, K. (2024). An Examination of Business Models in The Circular Economy Innovation for Sustainability. International Journal of SDG’s Prospects and Breakthroughs, 2(4), 1-6.
  • Mehta, I., & Dutta, S. (2024). Intergenerational Cultural Transmission in Rapidly Globalizing Societies. Progression journal of Human Demography and Anthropology, 9-12.
  • Menon, A., & Rao, I. (2024). Consumer Behavior and Brand Loyalty: Insights from the Periodic Series on Marketing and Social Psychology. Digital Marketing Innovations, 1-6.
  • Mohamed, H. I., Elsherbiny, E. A., & Abdelhamid, M. T. (2016). Physiological and biochemical responses of Vicia faba plants to foliar application of zinc and iron. Gesunde Pflanzen, 68(4), 201-212. https://doi.org/10.1007/s10343-016-0378-0
  • Munns, R. (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, cell & environment, 16(1), 15-24. https://doi.org/10.1111/j.1365-3040.1993.tb00840.x
  • Musa, M. H., & Mohamad, M. N. (2018). Importance of green innovation in Malaysian SMEs: advantages and future research. Int. Acad. J. Bus. Manag, 5, 64-73.
  • Narayanan, L., & Rajan, A. (2024). Artificial Intelligence for Sustainable Agriculture: Balancing Efficiency and Equity. International Journal of SDG’s Prospects and Breakthroughs, 2(1), 4-6.
  • Nie, W., Gong, B., Chen, Y., Wang, J., Wei, M., & Shi, Q. (2018). Photosynthetic capacity, ion homeostasis and reactive oxygen metabolism were involved in exogenous salicylic acid increasing cucumber seedlings tolerance to alkaline stress. Scientia Horticulturae, 235, 413-423. https://doi.org/10.1016/j.scienta.2018.03.011
  • Noroozi, M., Chavoshie, E., & Ghajar Sepanlou, M. (2022). Effect of irrigation water salinity on relative yield and some morphological and physiological characteristics of Sorghum. Journal of Water Research in Agriculture, 36(1), 55-73. https://doi.org/10.22092/jwra.2022.352078.
  • Palma, F., López-Gómez, M., Tejera, N. A., & Lluch, C. (2013). Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Science, 208, 75-82. https://doi.org/10.1016/j.plantsci.2013.03.015
  • Pathak, P. S. (2000). Agro forestry: A tool for arresting land degradation. Indian Farming, 49(11), 15-19.
  • Pokotylo, I., Hodges, M., Kravets, V., & Ruelland, E. (2022). A ménage à trois: salicylic acid, growth inhibition, and immunity. Trends in plant science, 27(5), 460-471.
  • Raboin, L. M., Razafimahafaly, A. H. D., Rabenjarisoa, M. B., Rabary, B., Dusserre, J., & Becquer, T. (2016). Improving the fertility of tropical acid soils: Liming versus biochar application? A longterm comparison in the highlands of Madagascar. Field Crops Research, 199, 99-108. https://doi.org/10.1016/j.fcr.2016.09.005
  • Rasheed, F., Anjum, N. A., Masood, A., Sofo, A., & Khan, N. A. (2022). The key roles of salicylic acid and sulfur in plant salinity stress tolerance. Journal of Plant Growth Regulation, 41(5), 1891-1904. https://doi.org/10.1007/s00344-020-10257-3
  • Souana, K., Taïbi, K., Ait Abderrahim, L., Amirat, M., Achir, M., Boussaid, M., & Mulet, J. M. (2020). Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response. Scientia Horticulturae, 273, 109641. https://doi.org/10.1016/j.scienta.2020.109641
  • Steppuhn, H., Volkmar, K. M., & Miller, P. R. (2001). Comparing canola, field pea, dry bean, and durum wheat crops grown in saline media. Crop science, 41(6), 1827-1833. https://doi.org/10.2135/cropsci2001.1827
  • Usman, A. R. A., Al-Wabel, M. I., Abdulaziz, A. H., Mahmoud, W. A., EL-NAGGAR, A. H., AHMAD, M., ... & Abdulrasoul, A. O. (2016). Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation. Pedosphere, 26(1), 27-38. https://doi.org/10.1016/S1002-0160(15)60019-4
  • Verma, K., & Agrawal, S. B. (2017). Salicylic acid-mediated defence signalling in respect to its perception, alteration and transduction. In Salicylic acid: a multifaceted hormone (pp. 97-122). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-6068-7_6
  • Vijayvargiya, S., Kumar, A. 2011. Influence of Salinity Stress on Plant Growth and Productivity: Salinity stress influences on plant growth. Lap Lambert Academic Publishers, Germany, 170 pp.
  • Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14. https://doi.org/10.1007/s00425-003-1105-5
  • Yamato, M., Okimori, Y., Wibowo, I. F., Anshori, S., & Ogawa, M. (2006). Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil science and plant nutrition, 52(4), 489-495. https://doi.org/10.1111/j.1747-0765.2006.00065.x
  • Zhang, H. X., Hodson, J. N., Williams, J. P., & Blumwald, E. (2001). Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proceedings of the National Academy of Sciences, 98(22), 12832-12836. https://doi.org/10.1073/pnas.231476498
There are 47 citations in total.

Details

Primary Language English
Subjects Agricultural Marine Biotechnology
Journal Section Articles
Authors

Talib Khairi Mohsen 0009-0008-9866-2243

Ahmad Mohammadi Ghehsareh 0000-0002-2261-421X

Bushra Mahmoud Alwan 0000-0003-1572-651X

Mitra Ataabadi This is me 0000-0001-9591-4371

Publication Date September 1, 2025
Submission Date July 3, 2025
Acceptance Date August 13, 2025
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA Mohsen, T. K., Ghehsareh, A. M., Alwan, B. M., Ataabadi, M. (2025). Investigating the Influence of Biochar and Salicylic Acid on Maize (Zea mays L.) Performance and Physiological Responses Under Salinity Stress Conditions. Natural and Engineering Sciences, 10(2), 482-494. https://doi.org/10.28978/nesciences.1733993

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015