Research Article
BibTex RIS Cite

Modelling Insect Dispersal in Agricultural Landscapes Using Agent-Based Models (ABM)

Year 2025, Volume: 10 Issue: 2, 305 - 314, 01.09.2025
https://doi.org/10.28978/nesciences.1763848

Abstract

This research focuses on insect dispersal within farming landscapes using agent-based models (ABMs). ABM allows individual insect actions and their environmental responses to be simulated in detail. The model integrates landscape components including crop type, hedgerows, and natural barriers. The results demonstrate these features' substantial impact on the movement pathways and distance traveled. Simulations validated through fieldwork showed spatial dispersal consistency relative to changing conditions. High concentration risk areas for pest accumulation were discovered with scenario evaluation. These results can enhance the precision of pest control approaches and reveal new, sophisticated methods of dealing with pest issues. The research illustrates the potential of ABM in ecosystem analysis and agricultural resource management. The ABM framework is readily adjustable to other species of insects and landscapes owing to its scalability. The spatial behavior decomposition also reveals a strong dependency of different behavioral settings on distances covered. Furthermore, it allows for combining GIS databases for better-defined regional precision coordinates. The system described assists in creating forecasting instruments for ecological agriculture.

References

  • Anderson, J., & Thompson, L. (2023). Advances in agent-based modeling for ecological applications. Ecological Modeling, 470, 110123. https://doi.org/10.1016/j.ecolmodel.2023.110123.
  • Balavandi, S. (2017). Further study industrial production in hemp crops agriculture. International Academic Journal of Science and Engineering, 4(1), 123–127.
  • Chen, Y., & Gupta, R. (2024). Landscape connectivity and biological control: An agent-based modeling study. Biological Control, 172, 104987.
  • Huong, N. T., & Dung, N. T. (2023). The Experience of the US and Japan in Agricultural Economic Development Policy and Lessons for Vietnam. International Journal of Advances in Engineering and Emerging Technology, 14(1), 16–21.
  • Johnson, P., Li, Q., & Roberts, M. (2023). Using agent-based models to optimize pesticide application in crop protection. Crop Protection, 165, 105429. https://doi.org/10.1016/j.cropro.2023.105429.
  • Krishnan, M., & Iyer, S. R. (2024). Protein Concentration from Plant-Based Sources Using Cross-Flow Filtration. Engineering Perspectives in Filtration and Separation, 2(1), 17-20.
  • Lee, H., & Kim, J. (2024). Influence of hedgerows and field margins on aphid dispersal: An agent-based modeling approach. Landscape Ecology, 39(2), 555–572.
  • Min, A. K., Thandar, N. H., & Htun, Z. T. (2025). Smart sensors embedded systems for environmental monitoring system integration. Journal of Integrated VLSI, Embedded and Computing Technologies, 2(3), 1–11.
  • Mustapha, S. B., Alkali, A., Zongoma, B. A., & Mohammed, D. (2017). Effects of Climatic Factors on Preference for Climate Change Adaptation Strategies among Food Crop Farmers in Borno State, Nigeria. International Academic Journal of Innovative Research, 4(1), 52–60.
  • Nayak, A., & Raghatate, K. S. (2024). Image segmentation and classification of aquatic plants using convolutional neural network. International Journal of Aquatic Research and Environmental Studies, 4(S1), 14-19. https://doi.org/10.70102/IJARES/V4S1/3.
  • Nguyen, T., Martinez, R., & Lee, S. (2023). Enhancing landscape representation in insect dispersal models through remote sensing integration. Remote Sensing in Ecology and Conservation, 9(1), 45–58. https://doi.org/10.1002/rse2.343.
  • Park, S., Lee, M., & Kim, D. (2025). Climate change impacts on insect dispersal: An agent-based modeling approach. Global Change Biology, 31(1), 112–127. https://doi.org/10.1111/gcb.15987.
  • Rodriguez, F., & Martinez, A. (2025). A hybrid modeling framework combining cellular automata and ABM for insect dispersal in changing landscapes. Ecological Informatics, 67, 101541.
  • Spoorthi, A. S., Sunil, T. D., & Kurian, M. Z. (2021). Implementation of LoRa based autonomous agriculture robot. Int J Commun Comput Technol, 9(1), 34-39.
  • Smith, R., Patel, S., & Johnson, M. (2023). Modeling corn rootworm dispersal in fragmented agricultural landscapes using agent-based models. Agricultural Systems, 204, 103508.
  • Toha, A., Ahmad, H., & Lee, X. (2025). IoT-based embedded systems for precision agriculture: Design and implementation. SCCTS Journal of Embedded Systems Design and Applications, 2(2), 21–29.
  • Veerasamy, K., & Fredrik, E. J. T. (2023). Intelligence System towards Identify Weeds in Crops and Vegetables Plantation Using Image Processing and Deep Learning Techniques. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 14(4), 45-59.
  • Weiwei, L., Xiu, W., & Yifan, J. Z. (2025). Wireless sensor network energy harvesting for IoT applications: Emerging trends. Journal of Wireless Sensor Networks and IoT, 2(1), 50-61.
  • Wilson, E., & Torres, J. (2023). Participatory agent-based modeling for sustainable pest management in agricultural communities. Environmental Modelling & Software, 164, 105386.
  • Zhao, Y., Chen, D., & Wang, L. (2024). Seasonal crop rotations affect diamondback moth dispersal: Insights from multi-agent simulations. Pest Management Science, 80(3), 678–690.
  • Ziwei, M., & Han, L. L. (2023). Scientometric Review of Sustainable Land Use and Management Research. Aquatic Ecosystems and Environmental Frontiers, 1(1), 21-24.
There are 21 citations in total.

Details

Primary Language English
Subjects Agricultural Marine Biotechnology
Journal Section Articles
Authors

Hayder Muhamed Abas 0009-0009-0963-1267

Gulsara Ruzieva This is me 0009-0008-7464-4518

Deepa Rajesh This is me 0009-0008-9743-4791

Maqsad Matyakubov This is me 0009-0002-5892-6458

P. Sundara Balamurugan This is me 0009-0002-7440-0181

Prachi Gurudiwan This is me 0009-0008-0150-5250

Publication Date September 1, 2025
Submission Date August 13, 2025
Acceptance Date August 16, 2025
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA Abas, H. M., Ruzieva, G., Rajesh, D., … Matyakubov, M. (2025). Modelling Insect Dispersal in Agricultural Landscapes Using Agent-Based Models (ABM). Natural and Engineering Sciences, 10(2), 305-314. https://doi.org/10.28978/nesciences.1763848

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015