Research Article
BibTex RIS Cite

Using the MaxEnt Algorithm to Predict Habitat Suitability Under Climate Change Scenarios

Year 2025, Volume: 10 Issue: 2, 270 - 283, 01.09.2025
https://doi.org/10.28978/nesciences.1763921

Abstract

Forecasting habitat suitability for species under scenarios of climate change is a crucial approach for biodiversity conservation and resource management. This study used the Maximum Entropy (MaxEnt) modelling algorithm to evaluate and predict habitat suitability for [target species] among current and projected climate conditions. Environmental data were extracted from authenticated global databases, and a range of environmental variables, including bioclimatic and topography, were selected to train the MaxEnt model. Future climate data were mapped for the years 2050 and 2070, based on projections from multiple General Circulation Models (GCMs) and Representative Concentration Pathways (RCPs) 4.5 and 8.5. The MaxEnt model's accuracy was estimated using the Area Under the Receiver Operating Characteristics Curve (AUC), and all models demonstrated high predictive performance. The predicted future habitat suitability and estimated percentage changes, distinctly demonstrated significant range shift with contraction of potential suitable habitat or expansion depending on the scenario. [key environmental variables, e.g., temperature seasonality, annual precipitation] were the most important environmental variables to influence distribution in the models. Ultimately, it was clear that the species modeled could be vulnerable to climate change, both in the present and in the future. Considering the potential impacts on biodiversity, it would be prudent to research predictive modeling in conservation planning further. Predictive modeling can yield beneficial outcomes, particularly for considering habitat changes in response to climate impacts, and may aid conservation biologists in developing adaptive responses to reduce the effects of climate change.

References

  • Aadiwal, V., Upadhyay, S., Nagappan, B., & Wani, T. A. (2025). Investigating the Influence of Physiographic Factors on Habitat Selection by Cetacean Species in Marine Environments. Natural and Engineering Sciences, 10(1), 301-311. https://doi.org/10.28978/nesciences.1646474.
  • Akash, K., & Nithish, S. Balamurugan (2022). Traffic Flow Prediction Using RF Algorithm in Machine Learning. International Academic Journal of Innovative Research, 9(1),37-41... https://doi.org/10.9756/IAJIR/V9I1/IAJIR0906.
  • Al-Zarkoshi, A. H. K., & Razzaq, D. A. (2022). The impact of carbon dioxide emissions on the growth of GDP in Iraq and its implications for development. International Academic Journal of Social Sciences, 9(2), 43–51. https://doi.org/10.9756/IAJSS/V9I2/IAJSS0913.
  • Anbarasi, D., & Dharmarajan, R. (2018). The Fine-Interval Tracking Algorithm for TYPHLOTIC People. International Journal of Advances in Engineering and Emerging Technology, 9(4), 1-12.
  • Araújo, M. B., & Peterson, A. T. (2012). Uses and misuses of bioclimatic envelope modeling. Ecology, 93(7), 1527-1539. https://doi.org/10.1890/11-1930.1.
  • Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology letters, 15(4), 365-377. https://doi.org/10.1111/j.1461-0248.2011.01736.x.
  • Boria, R. A., Olson, L. E., Goodman, S. M., & Anderson, R. P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73–77. https://doi.org/10.1016/j.ecolmodel.2005.03.026.
  • Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., & Mace, G. M. (2011). Beyond predictions: biodiversity conservation in a changing climate. science, 332(6025), 53-58. https://doi.org/10.1126/science.1200303.
  • Dormann, C. F., Schymanski, S. J., Cabral, J., Chuine, I., Graham, C., Hartig, F., ... & Singer, A. (2012). Correlation and process in species distribution models: bridging a dichotomy. Journal of Biogeography, 39(12), 2119-2131. https://doi.org/10.1111/j.1365-2699.2011.02659.x.
  • Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual review of ecology, evolution, and systematics, 40(1), 677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159.
  • Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and distributions, 17(1), 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x.
  • Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological modelling, 135(2-3), 147-186. https://doi.org/10.1016/S0304-3800(00)00354-9.
  • Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat suitability and distribution models: with applications in R. Cambridge University Press.
  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Veryhigh resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1965-1978. https://doi.org/10.1002/joc.1276.
  • Khudhur, O. I., & Aziz, A. A. (2024). Determination of radon concentrations in selected soil samples from the city of Mosul using nuclear track detector CR-39. International Academic Journal of Science and Engineering, 11(1), 169–173. https://doi.org/10.9756/IAJSE/V11I1/IAJSE1120.
  • Kumar, S., & Stohlgren, T. J. (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and natural Environment, 1(4), 94-98.
  • Li, X., Zhang, X., Wang, X., & Li, M. (2020). Predicting the impact of climate change on the distribution of Rheum palmatum using MaxEnt modeling. Global Ecology and Conservation, 21, e00895.
  • Loera, I., Ibarra-Manríquez, G., & Sosa, V. (2017). Species distribution models and climate change: Predicting future habitats for Mexican alpine plants. Plant Ecology & Diversity, 10(4), 365–378.
  • Loiselle, B. A., Howell, C. A., Graham, C. H., Goerck, J. M., Brooks, T., Smith, K. G., & Williams, P. H. (2003). Avoiding pitfalls of using species distribution models in conservation planning.Conservation biology, 17(6), 1591-1600. https://doi.org/10.1111/j.1523-1739.2003.00233.x.
  • Merow, C., Smith, M. J., & Silander Jr, J. A. (2013). A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography, 36(10), 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x.
  • Nayak, A., Lalnunthari, & Rawat, A. (2025). Surveillance of coastal erosion and marine habitat degradation using remote sensing and GIS. International Journal of Aquatic Research and Environmental Studies, 5(1), 162–169. https://doi.org/10.70102/IJARES/V5I1/5-1-16.
  • Owens, H. L., Campbell, L. P., Dornak, L. L., Saupe, E. E., Barve, N., Soberón, J., ... & Peterson, A. T. (2013). Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological modelling, 263, 10-18. https://doi.org/10.1016/j.ecolmodel.2013.04.011.
  • Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst., 37(1), 637-669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100.
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259.
  • Singh Palash, P., & Dhurvey, P. (2024). Influence and Prediction of Sintered Aggregate Size Distribution on the Performance of Lightweight Alkali-Activated Concrete. Archives for Technical Sciences, 31(2), 49-56. https://doi.org/10.70102/afts.2024.1631.049.
  • Tamannaeifar, M. R., & Behzadmoghaddam, R. (2016). Examination of the relationship between life satisfaction and perceived social support. International Academic Journal of Organizational Behavior and Human Resource Management, 3(3), 8-15.
  • Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., Campbell Grant, E. H., & Veran, S. (2013). Presence‐only modelling using MAXENT: when can we trust the inferences? Methods in Ecology and Evolution, 4(3), 236-243. https://doi.org/10.1111/2041-210x.12004.
There are 27 citations in total.

Details

Primary Language English
Subjects Environmental Marine Biotechnology
Journal Section Articles
Authors

Debashish Hota 0000-0002-2584-8337

K Rajasekar This is me 0000-0002-9292-4037

Tarun Parashar This is me 0000-0002-8250-5859

Sakshi Sobti This is me 0009-0003-9901-0056

Ashutosh Roy This is me 0009-0009-8393-9374

P. Ajitha This is me 0000-0001-5798-7035

Publication Date September 1, 2025
Submission Date August 13, 2025
Acceptance Date August 16, 2025
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA Hota, D., Rajasekar, K., Parashar, T., … Sobti, S. (2025). Using the MaxEnt Algorithm to Predict Habitat Suitability Under Climate Change Scenarios. Natural and Engineering Sciences, 10(2), 270-283. https://doi.org/10.28978/nesciences.1763921

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015