Research Article
BibTex RIS Cite

Farklı Restorasyon Materyallerinin Ağız İçi Tarayıcı Doğruluğuna Etkisi

Year 2024, , 18 - 26, 15.10.2024
https://doi.org/10.51122/neudentj.2024.111

Abstract

Amaç: Bu çalışma, farklı restorasyon malzemelerinin ağız içi tarayıcıların doğruluğunu nasıl etkilediğini değerlendirmiştir.
Gereç ve Yöntemler: Bir tipodont model üzerindeki yapay dişler, tam metal, monolitik zirkonya ve metal destekli porselen malzemeleri kullanılarak kron ve sabit bölümlü protez için prepare edildi. Her grup, Trios ağıziçi tarayıcı ile on kez tarandı ve toplamda 60 STL dosyası oluşturuldu. Yansımayı azaltmak için tarama spreyi kullanılarak bir referans tarayıcı ile ana model oluşturuldu. STL dosyaları tersine mühendislik yazılımı ile hizalanarak karşılaştırıldı ve mikrometre (μm) cinsinden Kök Ortalama Kare (RMS) ve Ortalama Mesafe ölçümleri ile analiz edildi. İstatistiksel değerlendirme için Levene testi ve iki yönlü ANOVA ile Post Hoc analizi kullanıldı.
Bulgular: Köprü restorasyonlar için RMS sapmaları metalde 77,9 ± 15,2 μm, monolitik zirkonyada 84,6 ± 6,9 μm ve porselende 130 ± 19,7 μm olarak bulundu. Kronlar için RMS değerleri tam metalde 76,9 ± 6,5 μm, monolitik zirkonyada 71 ± 8,2 μm ve porselende 153 ± 22,4 μm bulundu. Köprü restorasyonlar için Ortalama Mesafe sapmaları metalde 11,4 ± 4,8 μm, monolitik zirkonyada 11,2 ± 3,4 μm ve porselende 18,3 ± 2,6 μm olarak bulundu. Kronlar için Ortalama Mesafe değerleri metalde 8,6 ± 3,4 μm, monolitik zirkonyada 10,2 ± 3 μm ve porselende 24,7 ± 3,3 μm bulundu. Porselen gruplarında anlamlı farklılıklar gözlendi.
Sonuç: Restorasyon malzemeleri, özellikle metal destekli porselen restorasyonlarında ağız içi tarayıcıların doğruluğunu önemli ölçüde etkilemektedir. Restorasyon uzunluğu, doğruluk üzerinde önemli bir etki göstermemiştir.

References

  • Chandran DT, Jagger DC, Jagger RG, Barbour ME. Two- and three-dimensional accuracy of dental impression materials: Effects of storage time and moisture contamination. Biomed Mater Eng. 2010;20:243-9.
  • Ahlholm P, Sipilä K, Vallittu P, Jakonen M, Kotiranta U. Digital versus conventional impressions in fixed prosthodontics: A review. J Prosthodont. 2018;27:35-41.
  • Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: Current systems and future possibilities. J Am Dent Assoc. 2006;137:1289-96.
  • Andriessen FS, Rijkens DR, Van Der Meer WJ, Wismeijer DW. Applicability and accuracy of an intraoral scanner for scanning multiple implants in edentulous mandibles: A pilot study. J Prosthet Dent. 2014;111:186-94.
  • Bocklet C, Renne W, Mennito A, Bacro T, Latham J, Evans Z, et al. Effect of scan substrates on accuracy of 7 intraoral digital impression systems using human maxilla model. Orthod Craniofac Res. 2019;22:168–74.
  • ISO 5725-1. Accuracy (trueness and precision) of measurement methods and results - Part 1: General principles and definitions. 2023.
  • Meyer BJ, Mörmann WH, Lutz F. Optimization of the powder application in the Cerec method with environment-friendly propellant systems. Schweiz Monatsschr Zahnmed. 1990;100:1462-8.
  • Kim SY, Kim MJ, Han JS, Yeo IS, Lim YJ, Kwon HB. Accuracy of dies captured by an intraoral digital impression system using parallel confocal imaging. Int J Prosthodont. 2013;26:161-3.
  • Wiedhahn K, Schenk O, Fritzsche G. Cerec Omnicam - Intraoralscan 2.0. Int J Comput Dent. 2012;15:199-205.
  • Ahmad I. Three-dimensional shade analysis: perspectives of color-Part I. Pract Periodontics Aesthet Dent. 1999;11:789-96.
  • Mangano FG, Hauschild U, Veronesi G, Imburgia M, Mangano C, Admakin O. Trueness and precision of 5 intraoral scanners in the impressions of single and multiple implants: a comparative in vitro study. BMC Oral Health. 2019;19:101.
  • Paddock SW. Principles and practices of laser scanning confocal microscopy. Mol Biotechnol. 2000;16:127-49.
  • Ender A, Mehl A. In-vitro evaluation of the accuracy of conventional and digital methods of obtaining full-arch dental impressions. Quintessence Int. 2015;46:9-17.
  • Ender A, Mehl A. Accuracy of complete-arch dental impressions: A new method of measuring trueness and precision. J Prosthet Dent. 2013;109:121-8.
  • Kurz M, Attin T, Mehl A. Influence of material surface on the scanning error of a powder-free 3D measuring system. Clin Oral Investig. 2015;19:2035-43.
  • Flügge T, van der Meer WJ, Gonzalez BG, Vach K, Wismeijer D, Wang P. The accuracy of different dental impression techniques for implant‐supported dental prostheses: A systematic review and meta‐analysis. Clin Oral Implants Res. 2018;29:374-92.
  • Di Fiore A, Meneghello R, Graiff L, Savio G, Vigolo P, Monaco C, et al. Full arch digital scanning systems performances for implant-supported fixed dental prostheses: a comparative study of 8 intraoral scanners. J Prosthodont Res. 2019;63:396-403.
  • Schimmel M, Akino N, Srinivasan M, Wittneben JG, Yilmaz B, Abou-Ayash S. Accuracy of intraoral scanning in completely and partially edentulous maxillary and mandibular jaws: an in vitro analysis. Clin Oral Investig. 2021;25:1839-47.

The Effects of Different Restoration Materials on the Trueness of Intraoral Scanners

Year 2024, , 18 - 26, 15.10.2024
https://doi.org/10.51122/neudentj.2024.111

Abstract

Aim: This study aimed to assess how different restoration materials affect the trueness of intraoral scanners.
Materials and Methods: Artificial teeth on a typodont model were prepared for crowns and fixed partial dentures (FPDs) using full metal, monolithic zirconia, and porcelain-fused-to-metal (PFM) materials. Each group underwent 10 scans with a Trios intraoral scanner, generating 60 STL files. A reference scanner created a master model using scanning spray to reduce reflection errors. The STL files were aligned with reverse engineering software for comparison and were analyzed in micrometers (μm) using Root Mean Square (RMS) and Mean Distance measurements. The Levene test and two-way ANOVA with Post Hoc analysis were used for statistical evaluation.
Results: The RMS deviations for the FPDs were 77.9 ± 15.2 μm (full metal), 84.6 ± 6.9 μm (monolithic zirconia), and 130 ± 19.7 μm (PFM). For the crowns, the RMS values were 76.9 ± 6.5 μm (metal), 71 ± 8.2 μm (monolithic zirconia), and 153 ± 22.4 μm (PFM). The mean distance deviations for the FPDs were 11.4 ± 4.8 μm (metal), 11.2 ± 3.4 μm (monolithic zirconia), and 18.3 ± 2.6 μm (PFM). For the crowns, the mean distances were 8.6 ± 3.4 μm (metal), 10.2 ± 3 μm (monolithic zirconia), and 24.7 ± 3.3 μm (PFM). Significant differences were noted in the PFM groups.
Conclusion: Restoration materials notably affected intraoral scanner trueness, especially PFM restorations. The restoration length did not significantly affect the accuracy.

References

  • Chandran DT, Jagger DC, Jagger RG, Barbour ME. Two- and three-dimensional accuracy of dental impression materials: Effects of storage time and moisture contamination. Biomed Mater Eng. 2010;20:243-9.
  • Ahlholm P, Sipilä K, Vallittu P, Jakonen M, Kotiranta U. Digital versus conventional impressions in fixed prosthodontics: A review. J Prosthodont. 2018;27:35-41.
  • Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: Current systems and future possibilities. J Am Dent Assoc. 2006;137:1289-96.
  • Andriessen FS, Rijkens DR, Van Der Meer WJ, Wismeijer DW. Applicability and accuracy of an intraoral scanner for scanning multiple implants in edentulous mandibles: A pilot study. J Prosthet Dent. 2014;111:186-94.
  • Bocklet C, Renne W, Mennito A, Bacro T, Latham J, Evans Z, et al. Effect of scan substrates on accuracy of 7 intraoral digital impression systems using human maxilla model. Orthod Craniofac Res. 2019;22:168–74.
  • ISO 5725-1. Accuracy (trueness and precision) of measurement methods and results - Part 1: General principles and definitions. 2023.
  • Meyer BJ, Mörmann WH, Lutz F. Optimization of the powder application in the Cerec method with environment-friendly propellant systems. Schweiz Monatsschr Zahnmed. 1990;100:1462-8.
  • Kim SY, Kim MJ, Han JS, Yeo IS, Lim YJ, Kwon HB. Accuracy of dies captured by an intraoral digital impression system using parallel confocal imaging. Int J Prosthodont. 2013;26:161-3.
  • Wiedhahn K, Schenk O, Fritzsche G. Cerec Omnicam - Intraoralscan 2.0. Int J Comput Dent. 2012;15:199-205.
  • Ahmad I. Three-dimensional shade analysis: perspectives of color-Part I. Pract Periodontics Aesthet Dent. 1999;11:789-96.
  • Mangano FG, Hauschild U, Veronesi G, Imburgia M, Mangano C, Admakin O. Trueness and precision of 5 intraoral scanners in the impressions of single and multiple implants: a comparative in vitro study. BMC Oral Health. 2019;19:101.
  • Paddock SW. Principles and practices of laser scanning confocal microscopy. Mol Biotechnol. 2000;16:127-49.
  • Ender A, Mehl A. In-vitro evaluation of the accuracy of conventional and digital methods of obtaining full-arch dental impressions. Quintessence Int. 2015;46:9-17.
  • Ender A, Mehl A. Accuracy of complete-arch dental impressions: A new method of measuring trueness and precision. J Prosthet Dent. 2013;109:121-8.
  • Kurz M, Attin T, Mehl A. Influence of material surface on the scanning error of a powder-free 3D measuring system. Clin Oral Investig. 2015;19:2035-43.
  • Flügge T, van der Meer WJ, Gonzalez BG, Vach K, Wismeijer D, Wang P. The accuracy of different dental impression techniques for implant‐supported dental prostheses: A systematic review and meta‐analysis. Clin Oral Implants Res. 2018;29:374-92.
  • Di Fiore A, Meneghello R, Graiff L, Savio G, Vigolo P, Monaco C, et al. Full arch digital scanning systems performances for implant-supported fixed dental prostheses: a comparative study of 8 intraoral scanners. J Prosthodont Res. 2019;63:396-403.
  • Schimmel M, Akino N, Srinivasan M, Wittneben JG, Yilmaz B, Abou-Ayash S. Accuracy of intraoral scanning in completely and partially edentulous maxillary and mandibular jaws: an in vitro analysis. Clin Oral Investig. 2021;25:1839-47.
There are 18 citations in total.

Details

Primary Language English
Subjects Prosthodontics
Journal Section RESEARCH ARTICLE
Authors

Mehmet Gözen 0009-0002-0570-8131

Neslihan Güntekin 0000-0003-1432-5730

Ceyda Akın 0000-0001-9704-3100

Publication Date October 15, 2024
Submission Date June 17, 2024
Acceptance Date September 2, 2024
Published in Issue Year 2024

Cite

Vancouver Gözen M, Güntekin N, Akın C. The Effects of Different Restoration Materials on the Trueness of Intraoral Scanners. NEU Dent J. 2024(3):18-26.