Research Article
BibTex RIS Cite

Investigation of Fracture Strength and SEM Images of Different CAD-CAM Materials Applied to Two Different Inlay Cavities

Year 2024, , 51 - 59, 15.10.2024
https://doi.org/10.51122/neudentj.2024.115

Abstract

Introduction: This study aims to determine and compare the fracture strength and failure modes of zirconia-reinforced lithium silicate glass ceramics (ZLS) and yttria-stabilized zirconia-based ceramic MOD and MO inlay restorations.
Materials and Methods: Stumps representing the maxillary second premolar were prepared using HyperDent software and CAD/CAM milling units. Thirty-two epoxy resin die models were obtained, with 16 samples in each group. Subsequently, restorations were fabricated using Vita Suprinity (VITA Zahnfabrik, Bad Sackingen, Germany) and IPS e.max ZirCAD CAD/CAM (Ivoclar et all., Liechtenstein) blocks to restore the inlay cavities. The specimens were subjected to aging and then tested for fracture using a universal testing machine. The resulting fractures were classified. Data normality was assessed using the Shapiro-Wilk test, and homogeneity of variances was evaluated using the Levene test. The interaction between restorative material type and cavity surface was tested using two-way ANOVA.
Results: The fracture strength of IPS e.max ZirCAD material (mean value: 723.18±57.51) is higher than that of Vita Suprinity ZLS material (689.86±113.61), but this difference is not statistically significant (F=3.46, p=0.073). The group with 3-surface cavities in the tooth material (768.00±60.60) has significantly different fracture strength compared to the group with 2-surface cavities (645.037±71.20) (F=47.18, p<0.001).
Conclusions: Having a 3-surface cavity may further enhance the fracture resistance of inlay restorations, and this difference is statistically significant. There is no significant difference in fracture strength among restorative materials.

Project Number

23.GENEL.010

References

  • Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent. 1996;75:18-32.
  • Höland W, Beall G. Principles of designing glass-ceramic formation. Glass-Ceramic Technology, 2nd ed. Wiley: Hoboken, NJ, USA. 2012:39-72.
  • Turkaslan S, Bagis B, Akan E, Mutluay M, Vallittu P. Fracture strengths of chair‑side‑generated veneers cemented with glass fibers. Niger J Clin Pract. 2015;18:240-46.
  • Mörmann WH, Stawarczyk B, Ender A, et al. Wear characteristics of current aesthetic dental restorative CAD/CAM materials: two-body wear, gloss retention, roughness and Martens hardness. J Mech Behav Biomed Mater 2013;20:113-25.
  • Giordano R. Materials for chairside CAD/CAM-produced restorations. J Am Dent Assoc 2006;137:14s-21s.
  • Springall GAC, Yin L. Response of pre-crystallized CAD/CAM zirconia-reinforced lithium silicate glass ceramic to cyclic nanoindentation. J Mech Behav Biomed Mater. 2019;92:58-70.
  • Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res. 2014;93:1235-42.
  • Springall GAC, Yin L. Nano-scale mechanical behavior of pre-crystallized CAD/CAM zirconia-reinforced lithium silicate glass ceramic. J Mech Behav Biomed Mater. 2018;82:35-44.
  • Ivoclar Vivadent AJLIV. Scientific documentation IPS e. max® Press. 2005.
  • Burke FJ. The effect of variations in bonding procedure on fracture resistance of dentin-bonded all-ceramic crowns. Quintessence Int 1995;26:293-300.
  • Burke FJ. Maximising the fracture resistance of dentine-bonded all-ceramic crowns. J Dent. 1999;27:169-73.
  • Scherrer SS, de Rijk WG. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int J Prosthodont 1993;6:462-7.
  • Yilmaz H, Aydin C, Gul BE. Flexural strength and fracture toughness of dental core ceramics. J Prosthet Dent. 2007;98:120-8.
  • Keshvad A, Hooshmand T, Asefzadeh F, et al. Marginal gap, internal fit, and fracture load of leucite-reinforced ceramic inlays fabricated by CEREC inLab and hot-pressed techniques. J Prosthodont. 2011;20:535-40.
  • Liu X, Fok A, Li H. Influence of restorative material and proximal cavity design on the fracture resistance of MOD inlay restoration. Dent Mater. 2014;30:327-33.
  • Sener-Yamaner ID, Sertgöz A, Toz-Akalın T, Özcan M. Effect of material and fabrication technique on marginal fit and fracture resistance of adhesively luted inlays made of CAD/CAM ceramics and hybrid materials. Journal of adhesion science 2017;31:55-70.
  • Soares LM, Razaghy M, Magne P. Optimization of large MOD restorations: Composite resin inlays vs. short fiber-reinforced direct restorations. Dent Mater. 2018;34:587-97.
  • Yoon HI, Sohn PJ, Jin S, Elani H, Lee SJ. Fracture Resistance of CAD/CAM-Fabricated Lithium Disilicate MOD Inlays and Onlays with Various Cavity Preparation Designs. J Prosthodont. 2019;28:e524-e29.
  • Al-Akhali M, Kern M, Elsayed A, Samran A, Chaar MS. Influence of thermomechanical fatigue on the fracture strength of CAD-CAM-fabricated occlusal veneers. J Prosthet Dent. 2019;121:644-50.
  • Barakat O, Mohammed N. Effect Of Different Base Materials On The Micro Leakage And Fracture Resistance Of Recent Ceramic Inlay Restorations. 2019;65 (4-October (Fixed Prosthodontics, Dental Materials, Conservative Dentistry & Endodontics)) :3805-16.
  • Willard A, Gabriel Chu TM. The science and application of IPS e.Max dental ceramic. Kaohsiung J Med Sci 2018;34:238-42.
  • Yamanel K, Caglar A, Gülsahi K, Ozden UA. Effects of different ceramic and composite materials on stress distribution in inlay and onlay cavities: 3-D finite element analysis. Dent Mater J 2009;28:661-70.
  • Dejak B, Młotkowski A. A comparison of mvM stress of inlays, onlays and endocrowns made from various materials and their bonding with molars in a computer simulation of mastication - FEA. Dent Mater. 2020;36:854-64.
  • Tribst JPM, Dal Piva AMO, Madruga CFL, et al. Endocrown restorations: Influence of dental remnant and restorative material on stress distribution. Dent Mater. 2018;34:1466-73.
  • Ioannidis A, Mühlemann S, Özcan M, et al. Ultra-thin occlusal veneers bonded to enamel and made of ceramic or hybrid materials exhibit load-bearing capacities not different from conventional restorations. J Mech Behav Biomed Mater 2019;90:433-40.
  • Maeder M, Pasic P, Ender A, et al. Load-bearing capacities of ultra-thin occlusal veneers bonded to dentin. J Mech Behav Biomed Mater. 2019;95:165-71.

İki Farklı İnley Kavitesine Uygulanan Farklı CAD-CAM Materyallerinin Kırılma Dayanımı Ve SEM Görüntülerinin İncelenmesi

Year 2024, , 51 - 59, 15.10.2024
https://doi.org/10.51122/neudentj.2024.115

Abstract

Amaç: Zirkonya lityum-disilikat cam-seramik ve itriyumla stabilize edilmiş zirkonya bazlı seramik MOD ve MO inlay restorasyonların kırılma mukavemetini ve başarısızlık modlarını belirlemek ve karşılaştırmaktır.
Materyal-Metod: Örneklerin elde edileceği maksillar 2. premolar dişini temsil eden güdükler, CAD/CAM freze ünitesinde hyperdent yazılım kullanılarak hazırlandı. Her bir grup için 16 adet olacak şekilde toplam 32 adet epoksi rezinden die model elde edildi. Daha sonra inley kavitelerini restore etmek için Vita Suprinity (VITA Zahnfabrik, BadSackingen, Germany) ve IPS e.max ZirCAD CAD/CAM (Ivoclar Vivadent Schaan Liechtenstein) bloklardan freze işlemi ile restorasyonlar üretildi. Örnekler yaşlandırma işleminden sonra universal bir test cihazı ile kırılma testine tabi tutuldu. Sonra oluşan kırıklar sınıflandırıldı. Verilerin normal dağılımı Shapiro-wilk testi ile değerlendirildi. Varyansların homojenliği Levene testi ile değerlendirildi. Restoratif materyal türü ve kavite yüzey etkileşimi two way Anova ile test edildi.
Bulgular: IPS e.max ZirCAD materyalin kırılma mukavemeti ortalama değeri (723,18±57,51), Vita Suprinity ZLS mataryelinden (689,86±113,61) yüksektir ancak istatistiksel olarak anlamlı değildir (F=3,46, p= 0,073). 3 yüzeyli kaviteye sahip diş materyal grubu (768,00±60,60), 2 yüzeyli kaviteye sahip olan gruptan (645,037±71,20) önemli derecede farklı kırılma mukavemetine sahiptir (F=4718, p<0,001).
Sonuç: Kavitenin 3 yüzeyli olması, inley restorasyonunun kırılma direncini daha da arttırabilir, ve bu istatistiksel olarak anlamlıdır. Restoratif materyaller arasında kırılma mukavemeti yönünden önemli bir fark yoktur.

Ethical Statement

ETİK KURUL ONAYI ALINMIŞTIR.

Supporting Institution

AFYONKARAHİSAR SAĞLIK BİLİMLERİ ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ KORDİNASYON BİRİMİ

Project Number

23.GENEL.010

References

  • Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent. 1996;75:18-32.
  • Höland W, Beall G. Principles of designing glass-ceramic formation. Glass-Ceramic Technology, 2nd ed. Wiley: Hoboken, NJ, USA. 2012:39-72.
  • Turkaslan S, Bagis B, Akan E, Mutluay M, Vallittu P. Fracture strengths of chair‑side‑generated veneers cemented with glass fibers. Niger J Clin Pract. 2015;18:240-46.
  • Mörmann WH, Stawarczyk B, Ender A, et al. Wear characteristics of current aesthetic dental restorative CAD/CAM materials: two-body wear, gloss retention, roughness and Martens hardness. J Mech Behav Biomed Mater 2013;20:113-25.
  • Giordano R. Materials for chairside CAD/CAM-produced restorations. J Am Dent Assoc 2006;137:14s-21s.
  • Springall GAC, Yin L. Response of pre-crystallized CAD/CAM zirconia-reinforced lithium silicate glass ceramic to cyclic nanoindentation. J Mech Behav Biomed Mater. 2019;92:58-70.
  • Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res. 2014;93:1235-42.
  • Springall GAC, Yin L. Nano-scale mechanical behavior of pre-crystallized CAD/CAM zirconia-reinforced lithium silicate glass ceramic. J Mech Behav Biomed Mater. 2018;82:35-44.
  • Ivoclar Vivadent AJLIV. Scientific documentation IPS e. max® Press. 2005.
  • Burke FJ. The effect of variations in bonding procedure on fracture resistance of dentin-bonded all-ceramic crowns. Quintessence Int 1995;26:293-300.
  • Burke FJ. Maximising the fracture resistance of dentine-bonded all-ceramic crowns. J Dent. 1999;27:169-73.
  • Scherrer SS, de Rijk WG. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int J Prosthodont 1993;6:462-7.
  • Yilmaz H, Aydin C, Gul BE. Flexural strength and fracture toughness of dental core ceramics. J Prosthet Dent. 2007;98:120-8.
  • Keshvad A, Hooshmand T, Asefzadeh F, et al. Marginal gap, internal fit, and fracture load of leucite-reinforced ceramic inlays fabricated by CEREC inLab and hot-pressed techniques. J Prosthodont. 2011;20:535-40.
  • Liu X, Fok A, Li H. Influence of restorative material and proximal cavity design on the fracture resistance of MOD inlay restoration. Dent Mater. 2014;30:327-33.
  • Sener-Yamaner ID, Sertgöz A, Toz-Akalın T, Özcan M. Effect of material and fabrication technique on marginal fit and fracture resistance of adhesively luted inlays made of CAD/CAM ceramics and hybrid materials. Journal of adhesion science 2017;31:55-70.
  • Soares LM, Razaghy M, Magne P. Optimization of large MOD restorations: Composite resin inlays vs. short fiber-reinforced direct restorations. Dent Mater. 2018;34:587-97.
  • Yoon HI, Sohn PJ, Jin S, Elani H, Lee SJ. Fracture Resistance of CAD/CAM-Fabricated Lithium Disilicate MOD Inlays and Onlays with Various Cavity Preparation Designs. J Prosthodont. 2019;28:e524-e29.
  • Al-Akhali M, Kern M, Elsayed A, Samran A, Chaar MS. Influence of thermomechanical fatigue on the fracture strength of CAD-CAM-fabricated occlusal veneers. J Prosthet Dent. 2019;121:644-50.
  • Barakat O, Mohammed N. Effect Of Different Base Materials On The Micro Leakage And Fracture Resistance Of Recent Ceramic Inlay Restorations. 2019;65 (4-October (Fixed Prosthodontics, Dental Materials, Conservative Dentistry & Endodontics)) :3805-16.
  • Willard A, Gabriel Chu TM. The science and application of IPS e.Max dental ceramic. Kaohsiung J Med Sci 2018;34:238-42.
  • Yamanel K, Caglar A, Gülsahi K, Ozden UA. Effects of different ceramic and composite materials on stress distribution in inlay and onlay cavities: 3-D finite element analysis. Dent Mater J 2009;28:661-70.
  • Dejak B, Młotkowski A. A comparison of mvM stress of inlays, onlays and endocrowns made from various materials and their bonding with molars in a computer simulation of mastication - FEA. Dent Mater. 2020;36:854-64.
  • Tribst JPM, Dal Piva AMO, Madruga CFL, et al. Endocrown restorations: Influence of dental remnant and restorative material on stress distribution. Dent Mater. 2018;34:1466-73.
  • Ioannidis A, Mühlemann S, Özcan M, et al. Ultra-thin occlusal veneers bonded to enamel and made of ceramic or hybrid materials exhibit load-bearing capacities not different from conventional restorations. J Mech Behav Biomed Mater 2019;90:433-40.
  • Maeder M, Pasic P, Ender A, et al. Load-bearing capacities of ultra-thin occlusal veneers bonded to dentin. J Mech Behav Biomed Mater. 2019;95:165-71.
There are 26 citations in total.

Details

Primary Language English
Subjects Prosthodontics, Restorative Dentistry
Journal Section RESEARCH ARTICLE
Authors

Rahime Zeynep Erdem 0000-0001-9217-9631

Kevser Karakaya 0000-0001-9130-5026

Project Number 23.GENEL.010
Publication Date October 15, 2024
Submission Date June 30, 2024
Acceptance Date September 4, 2024
Published in Issue Year 2024

Cite

Vancouver Erdem RZ, Karakaya K. Investigation of Fracture Strength and SEM Images of Different CAD-CAM Materials Applied to Two Different Inlay Cavities. NEU Dent J. 2024(3):51-9.