Research Article
BibTex RIS Cite

Examining the Impact of Environmental Quality in Architecture on Users’ Thermal Perception

Year 2025, Volume: 7 Issue: 1, 22 - 32, 31.03.2025

Abstract

Considering environmental factors in building design can improve users' quality of life and health while using less energy. In this context, since administrative and educational buildings host a large number of people who spend a significant amount of time inside, it is critical to explore the direct impact of environmental qualities in design such as thermal comfort on building users' physical and mental health, as well as energy efficiency. From the point of view of people's comfort in the environment, the present study suggests that, in addition to climatic components, other variables also influence an individual's thermal perception. So, it aims to investigate and analyze data based on the effect of environmental and physical components on thermal comfort in an educational place. The research method is the questionnaire, observation and recording of climatic data. The study was conducted with the participation of 97 employees of Konya Food and Agriculture University during five working days in August. The results show that the indoor air temperature and indoor relative humidity as environmental components and the location of the openings and the view of the natural environment as physical components have a great influence on the thermal perception of the users.

References

  • Ahmad, A., Kumar, A., Prakash, O. & Aman, A. (2020). Daylight availability assessment and the application of energy simulation software – A literature review. Materials Science for Energy Technologies, 3, 679-689.
  • Albatayneh, A., Alterman, D., Page, A. Moghtaderi, B. (2018). The impact of the thermal comfort models on the prediction of building energy consumption. Sustainability, 10 (10), 3609–3626.
  • Antoniadou, P. & Papadopoulos, A. M. (2017). Occupants’ thermal comfort: State of the art and the prospects of personalized assessment in office buildings. Energy & Buildings, 153, 136-149.
  • Arowoiya, V. A., Onososen, A. O., Moehler, R. C. & Fang, Y. (2024). Influence of thermal comfort on energy consumption for building occupants: The current state of the art,” Buildings, 14, (5), 1-28.
  • ASHRAE Standard 55, (2013). Thermal environment con-ditions for human occupancy. Atlanta, GA: ASHRAE, 2013. [Online]. Available: http://www.ierga.com/. [Accessed: Oct. 17, 2024].
  • Cansino, S., Torres-Trejo, F., Estrada-Manilla, C. & Ruiz-Velasco, S. (2024). Effects of different types of leisure activities on working memory across the adult lifespan,” Psychological Research, 88, 1981–1995.
  • Catrini, P., Curto, D., Franzitta, V. & Cardona, F. (2020). Improving energy efficiency of commercial buildings by combined heat cooling and power plants. Sustainable Cities and Society, 60, 1-14.
  • Djamila, H. (2017). Indoor thermal comfort predictions: Selected issues and trends. Renewable and Sustainable Energy Reviews, 74, 569–580, 2017.
  • Fan, Z., Liu, M., Tang, S. & Zong, X. (2023). Integrated daylight and thermal comfort evaluation for tropical passive gymnasiums based on the perspective of exercisers. Energy and Buildings, 300, 1-19.
  • Gao, S., Li, Y., Wang, Y. A., Meng, X. Z., Zhang, L. Y., Yang, C. & Jin, L. W. (2017). A human thermal balance-based evaluation of thermal comfort subject to radiant cooling system and sedentary status. Applied Thermal Engineering, 122, 461-472.
  • Heydarian, A., Carneiro, J. P., Gerber, D. & Becerik-Gerber, B. (2015). Immersive virtual environments, understanding the impact of design features and occupant choice upon lighting for building performance. Building and Environment, 89, 217-228.
  • Hraska, J. (2015). Chronobiological aspects of green buildings daylighting. Renewable Energy, 73, 109-114. IEA: International Energy Agency, Word Energy Outlook: 2024. IEA: International Energy Agency, 2024. [Online]. Available: http://www.iea.org. [Accessed: Oct. 17, 2024].
  • Joshi, S. M. (2008). The sick building syndrome. Indian Journal of Occupational and Environmental Medicine, 12 (2), 61-64.
  • Knez, I. & Thorsson, S. (2008). Thermal, emotional and perceptual evaluations of a park: Cross-cultural and environmental attitude comparisons. Building and Environment, 43 (9), 1483–1490.
  • Lee, E., Allen, A. & Kim, B. (2013). Interior design practitioner motivations for specifying sustainable materials: Applying the theory of planned behavior to residential design. Journal of Interior Design, 38 (4), 1-16.
  • Lenzholzer, S. & de Vries, S. (2020). Exploring outdoor thermal perception - a revised model. International Journal of Biometeorol, 64, 293–300.
  • Liu, Y., Wang, W., Li, Z., Song, J., Fang, Z., Pang, D. & Chen, Y. (2023). Daylighting performance and thermal comfort performance analysis of west-facing external shading for school office buildings in cold and severe cold regions of China. Sustainability, 15 (19), 1-27.
  • Luo, M., Wang, Z., Ke, K., Cao, B., Zhai, Y. & Zhou, X. (2018). Human metabolic rate and thermal comfort in buildings: The problem and challenge. Building and Environment, 131, 44-52.
  • McIntyre, D. A. (1980). Indoor Climate. London: Applied Science Publishers LTD.
  • Psomas, T., Teli, D., Donovan, A. O., Kolias, P. & Langer, S. (2024). Association of perceived thermal comfort and air quality with building and occupant-related characteristics and environmental parameters in Sweden. Energies, 17 (6), 1-27.
  • Salonen, H., Lahtinen, M.. Lappalainen, S.. Nevala, N., Knibbs, L. D.. Morawska, L. & Reijula, K. (2013). Physical characteristics of the indoor environment that affect health and wellbeing in healthcare facilities: A review. Intelligent Building International, 5 (1), 3-25.
  • Schweiker, M., Huebner, G. M. Kingma, B. R. M., Kramer, R. & Pallubinsky, H. (2018). Drivers of diversity in human thermal perception - A review for holistic comfort models. Temperature, 5 (4), 308-342.
  • Schweiker, M., Fuchs, X., Becker, S., Shukuya, M., Dovjak, M., Hawighorst, M. & Kolarik, J. (2017). Challenging the assumptions for thermal sensation scales. Building Research & Information, 45 (5), 572–589.
  • Vellei, M., de Dear, R., Inard, C. &Jay, O. (2021). Dynamic thermal perception: A review and agenda for future experimental research. Building and Environment, 205, 1-11.
  • Wagner, A., Gossauer, E., Moosmann, C., Gropp, Th. & Leonhart, R. (2007). Thermal comfort and workplace occupant satisfaction—Results of field studies in German low energy office buildings,” Energy and Buildings, 39 (7), 758-769.
  • Wang J, Wei, Z., Yao, N., Li, C. & Sun, L. (2023). Association between sunlight exposure and mental health: Evidence from a special population without sunlight in work. Risk Management and Healthcare Policy, 16, 1049-1057.
  • Wang, Z., de Dear, R., Luo, M., Lin, B., He, Y., Ghahramani, A. & Zhu, Y. (2018). Individual difference in thermal comfort: A literature review. Building and Environment, 138, 181-193.
  • Wu, Y., Zhang, S., Liu, H., Cheng, Y. & Liao, C. (2022). Thermal sensation, sick building syndrome symptoms, and physiological responses of occupants in environments with vertical air temperature differences. Journal of Thermal Biology, 108, 1-20.
  • Yang, W., Moon, H. J. & Joen, J. Y. (2019). Comparison of response scales as measures of indoor environmental perception in combined thermal and acoustic conditions. Sustainability, 11 (14), 1-26.
  • Zhang, Y. Lin, Z., Zheng, Z., Zhang, S. & Fang, Z. (2024). A review of investigation of the metabolic rate effects on human thermal comfort. Energy and Buildings, 315, 1-24.
  • Zhang, J., Li, P. & Ma, M. (2022). Thermal environment and thermal comfort in university classrooms during the heating season. Buildings, 12, (7), 1-20.
  • Zou, P., Xu, X., Sanjayan, J. & Wang, I. (2018). A mixed methods design for building occupants’ energy behaviour research. Energy and Buildings, 166, 239-249.

Mimaride Çevresel Niteliğin Kullanıcıların Termal Algısı Üzerindeki Etkisinin İncelenmesi

Year 2025, Volume: 7 Issue: 1, 22 - 32, 31.03.2025

Abstract

Bina tasarımında çevresel faktörlerin dikkate alınması, daha az enerji kullanırken kullanıcıların yaşam kalitesini ve sağlığını iyileştirmek için fayda sağlayabilir. Bu bağlamda, idari ve eğitim binaları uzun zaman içerisinde çok sayıda insana ev sahipliği yapıyor. Bu nedenle, termal konfor gibi tasarımdaki çevresel niteliklerin bina kullanıcılarının fiziksel ve zihinsel sağlığı ve enerji verimliliği üzerindeki doğrudan etkilerini araştırmak çok önemlidir. Bu çalışma, iklimsel faktörlerin yanı sıra diğer faktörlerin de insanların çevrelerindeki termal konforunu etkilediğini öne sürmektedir. Dolayısıyla, bir eğitim mekanında fiziksel ve çevresel faktörlerin termal algı üzerindeki etkilerine ilişkin verilerin incelenmesini ve analiz edilmesini amaçlamaktadır. Araştırma, gözlem ve iklim verilerinin toplanması yöntemiyle Ağustos ayında beş iş günü boyunca Konya Gıda ve Tarım Üniversitesi'nin 97 çalışanının katılımıyla gerçekleştirilmiştir. Sonuçlar, çevresel bileşenler olarak iç mekan hava sıcaklığı ve bağıl nemi ile fiziksel bileşenler olarak açıklıkların konumu ve doğal çevre manzarasının kullanıcıların termal algılarını önemli ölçüde etkilediğini göstermektedir.

References

  • Ahmad, A., Kumar, A., Prakash, O. & Aman, A. (2020). Daylight availability assessment and the application of energy simulation software – A literature review. Materials Science for Energy Technologies, 3, 679-689.
  • Albatayneh, A., Alterman, D., Page, A. Moghtaderi, B. (2018). The impact of the thermal comfort models on the prediction of building energy consumption. Sustainability, 10 (10), 3609–3626.
  • Antoniadou, P. & Papadopoulos, A. M. (2017). Occupants’ thermal comfort: State of the art and the prospects of personalized assessment in office buildings. Energy & Buildings, 153, 136-149.
  • Arowoiya, V. A., Onososen, A. O., Moehler, R. C. & Fang, Y. (2024). Influence of thermal comfort on energy consumption for building occupants: The current state of the art,” Buildings, 14, (5), 1-28.
  • ASHRAE Standard 55, (2013). Thermal environment con-ditions for human occupancy. Atlanta, GA: ASHRAE, 2013. [Online]. Available: http://www.ierga.com/. [Accessed: Oct. 17, 2024].
  • Cansino, S., Torres-Trejo, F., Estrada-Manilla, C. & Ruiz-Velasco, S. (2024). Effects of different types of leisure activities on working memory across the adult lifespan,” Psychological Research, 88, 1981–1995.
  • Catrini, P., Curto, D., Franzitta, V. & Cardona, F. (2020). Improving energy efficiency of commercial buildings by combined heat cooling and power plants. Sustainable Cities and Society, 60, 1-14.
  • Djamila, H. (2017). Indoor thermal comfort predictions: Selected issues and trends. Renewable and Sustainable Energy Reviews, 74, 569–580, 2017.
  • Fan, Z., Liu, M., Tang, S. & Zong, X. (2023). Integrated daylight and thermal comfort evaluation for tropical passive gymnasiums based on the perspective of exercisers. Energy and Buildings, 300, 1-19.
  • Gao, S., Li, Y., Wang, Y. A., Meng, X. Z., Zhang, L. Y., Yang, C. & Jin, L. W. (2017). A human thermal balance-based evaluation of thermal comfort subject to radiant cooling system and sedentary status. Applied Thermal Engineering, 122, 461-472.
  • Heydarian, A., Carneiro, J. P., Gerber, D. & Becerik-Gerber, B. (2015). Immersive virtual environments, understanding the impact of design features and occupant choice upon lighting for building performance. Building and Environment, 89, 217-228.
  • Hraska, J. (2015). Chronobiological aspects of green buildings daylighting. Renewable Energy, 73, 109-114. IEA: International Energy Agency, Word Energy Outlook: 2024. IEA: International Energy Agency, 2024. [Online]. Available: http://www.iea.org. [Accessed: Oct. 17, 2024].
  • Joshi, S. M. (2008). The sick building syndrome. Indian Journal of Occupational and Environmental Medicine, 12 (2), 61-64.
  • Knez, I. & Thorsson, S. (2008). Thermal, emotional and perceptual evaluations of a park: Cross-cultural and environmental attitude comparisons. Building and Environment, 43 (9), 1483–1490.
  • Lee, E., Allen, A. & Kim, B. (2013). Interior design practitioner motivations for specifying sustainable materials: Applying the theory of planned behavior to residential design. Journal of Interior Design, 38 (4), 1-16.
  • Lenzholzer, S. & de Vries, S. (2020). Exploring outdoor thermal perception - a revised model. International Journal of Biometeorol, 64, 293–300.
  • Liu, Y., Wang, W., Li, Z., Song, J., Fang, Z., Pang, D. & Chen, Y. (2023). Daylighting performance and thermal comfort performance analysis of west-facing external shading for school office buildings in cold and severe cold regions of China. Sustainability, 15 (19), 1-27.
  • Luo, M., Wang, Z., Ke, K., Cao, B., Zhai, Y. & Zhou, X. (2018). Human metabolic rate and thermal comfort in buildings: The problem and challenge. Building and Environment, 131, 44-52.
  • McIntyre, D. A. (1980). Indoor Climate. London: Applied Science Publishers LTD.
  • Psomas, T., Teli, D., Donovan, A. O., Kolias, P. & Langer, S. (2024). Association of perceived thermal comfort and air quality with building and occupant-related characteristics and environmental parameters in Sweden. Energies, 17 (6), 1-27.
  • Salonen, H., Lahtinen, M.. Lappalainen, S.. Nevala, N., Knibbs, L. D.. Morawska, L. & Reijula, K. (2013). Physical characteristics of the indoor environment that affect health and wellbeing in healthcare facilities: A review. Intelligent Building International, 5 (1), 3-25.
  • Schweiker, M., Huebner, G. M. Kingma, B. R. M., Kramer, R. & Pallubinsky, H. (2018). Drivers of diversity in human thermal perception - A review for holistic comfort models. Temperature, 5 (4), 308-342.
  • Schweiker, M., Fuchs, X., Becker, S., Shukuya, M., Dovjak, M., Hawighorst, M. & Kolarik, J. (2017). Challenging the assumptions for thermal sensation scales. Building Research & Information, 45 (5), 572–589.
  • Vellei, M., de Dear, R., Inard, C. &Jay, O. (2021). Dynamic thermal perception: A review and agenda for future experimental research. Building and Environment, 205, 1-11.
  • Wagner, A., Gossauer, E., Moosmann, C., Gropp, Th. & Leonhart, R. (2007). Thermal comfort and workplace occupant satisfaction—Results of field studies in German low energy office buildings,” Energy and Buildings, 39 (7), 758-769.
  • Wang J, Wei, Z., Yao, N., Li, C. & Sun, L. (2023). Association between sunlight exposure and mental health: Evidence from a special population without sunlight in work. Risk Management and Healthcare Policy, 16, 1049-1057.
  • Wang, Z., de Dear, R., Luo, M., Lin, B., He, Y., Ghahramani, A. & Zhu, Y. (2018). Individual difference in thermal comfort: A literature review. Building and Environment, 138, 181-193.
  • Wu, Y., Zhang, S., Liu, H., Cheng, Y. & Liao, C. (2022). Thermal sensation, sick building syndrome symptoms, and physiological responses of occupants in environments with vertical air temperature differences. Journal of Thermal Biology, 108, 1-20.
  • Yang, W., Moon, H. J. & Joen, J. Y. (2019). Comparison of response scales as measures of indoor environmental perception in combined thermal and acoustic conditions. Sustainability, 11 (14), 1-26.
  • Zhang, Y. Lin, Z., Zheng, Z., Zhang, S. & Fang, Z. (2024). A review of investigation of the metabolic rate effects on human thermal comfort. Energy and Buildings, 315, 1-24.
  • Zhang, J., Li, P. & Ma, M. (2022). Thermal environment and thermal comfort in university classrooms during the heating season. Buildings, 12, (7), 1-20.
  • Zou, P., Xu, X., Sanjayan, J. & Wang, I. (2018). A mixed methods design for building occupants’ energy behaviour research. Energy and Buildings, 166, 239-249.
There are 32 citations in total.

Details

Primary Language English
Subjects Architectural Design
Journal Section Research Article
Authors

Navid Khaleghımoghaddam 0000-0003-2505-207X

Publication Date March 31, 2025
Submission Date November 13, 2024
Acceptance Date February 8, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Khaleghımoghaddam, N. (2025). Examining the Impact of Environmental Quality in Architecture on Users’ Thermal Perception. YDÜ Mimarlık Fakültesi Dergisi, 7(1), 22-32.
AMA Khaleghımoghaddam N. Examining the Impact of Environmental Quality in Architecture on Users’ Thermal Perception. YDÜ Mimarlık Fakültesi Dergisi. March 2025;7(1):22-32.
Chicago Khaleghımoghaddam, Navid. “Examining the Impact of Environmental Quality in Architecture on Users’ Thermal Perception”. YDÜ Mimarlık Fakültesi Dergisi 7, no. 1 (March 2025): 22-32.
EndNote Khaleghımoghaddam N (March 1, 2025) Examining the Impact of Environmental Quality in Architecture on Users’ Thermal Perception. YDÜ Mimarlık Fakültesi Dergisi 7 1 22–32.
IEEE N. Khaleghımoghaddam, “Examining the Impact of Environmental Quality in Architecture on Users’ Thermal Perception”, YDÜ Mimarlık Fakültesi Dergisi, vol. 7, no. 1, pp. 22–32, 2025.
ISNAD Khaleghımoghaddam, Navid. “Examining the Impact of Environmental Quality in Architecture on Users’ Thermal Perception”. YDÜ Mimarlık Fakültesi Dergisi 7/1 (March 2025), 22-32.
JAMA Khaleghımoghaddam N. Examining the Impact of Environmental Quality in Architecture on Users’ Thermal Perception. YDÜ Mimarlık Fakültesi Dergisi. 2025;7:22–32.
MLA Khaleghımoghaddam, Navid. “Examining the Impact of Environmental Quality in Architecture on Users’ Thermal Perception”. YDÜ Mimarlık Fakültesi Dergisi, vol. 7, no. 1, 2025, pp. 22-32.
Vancouver Khaleghımoghaddam N. Examining the Impact of Environmental Quality in Architecture on Users’ Thermal Perception. YDÜ Mimarlık Fakültesi Dergisi. 2025;7(1):22-3.

All Rights Reserved - Near East University JOURNAL OF FACULTY OF ARCHITECTURE (JFA) is an Open Access journal, under Licensed CC-BY-NC.